JOURNAL BROWSE
Search
Advanced SearchSearch Tips
MULTIFRACTAL SPECTRUM IN A SELF-SIMILAR ATTRACTOR IN THE UNIT INTERVAL
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
MULTIFRACTAL SPECTRUM IN A SELF-SIMILAR ATTRACTOR IN THE UNIT INTERVAL
Baek, In-Soo;
  PDF(new window)
 Abstract
We study the multifractal spectrum of two dimensionally indexed classes whose members are distribution sets of a self-similar attractor in the unit interval.
 Keywords
Hausdorff dimension;packing dimension;multifractal;distribution set;self-similar attractor;
 Language
English
 Cited by
1.
SINGULARITY ORDER OF THE RIESZ-NÁGY-TAKÁCS FUNCTION,;

대한수학회논문집, 2015. vol.30. 1, pp.7-21 crossref(new window)
1.
SINGULARITY ORDER OF THE RIESZ-NÁGY-TAKÁCS FUNCTION, Communications of the Korean Mathematical Society, 2015, 30, 1, 7  crossref(new windwow)
 References
1.
I. S. Baek, Relation between spectral classes of a self-similar Cantor sets, J. Math. Anal. Appl. 292 (2004), no. 1, 294-302 crossref(new window)

2.
I. S. Baek, Dimensions of distribution sets in the unit interval, Commun. Korean Math. Soc. 22 (2007), no. 4, 547-552 crossref(new window)

3.
I. S. Baek, Dimensions of the subsets in the spectral classes of a self-similar Cantor set, Journal of Applied Mathematics and Informatics 26 (2008), no. 3-4, 733-738

4.
I. S. Baek, Characteristic multifractal in a self-similar Cantor set, Journal of the Chungcheong Math. Soc. 21 (2008), no. 2, 157-163

5.
I. S. Baek, Multifractal characterization of the Riesz-Nagy-Takacs function, preprint.

6.
I. S. Baek, L. Olsen, and N. Snigireva, Divergence points of self-similar measures and packing dimension, Adv. Math. 214 (2007), no. 1, 267-287 crossref(new window)

7.
K. J. Falconer, The Fractal Geometry, John Wiley and Sons, 1990

8.
K. J. Falconer, Techniques in Fractal Geometry, John Wiley and Sons, 1997

9.
H. H. Lee and I. S. Baek, A note on equivalent interval covering systems for packing dimension of R, J. Korean Math. Soc. 28 (1991), no. 2, 195-205

10.
L. Olsen and S. Winter, Normal and non-normal points of self-similar sets and divergence points of self-similar measures, J. London Math. Soc. 67 (2003), no. 2, 103-122 crossref(new window)