JOURNAL BROWSE
Search
Advanced SearchSearch Tips
HYERS-ULAM STABILITY OF TRIGONOMETRIC FUNCTIONAL EQUATIONS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
HYERS-ULAM STABILITY OF TRIGONOMETRIC FUNCTIONAL EQUATIONS
Chang, Jeong-Wook; Chung, Jae-Young;
  PDF(new window)
 Abstract
In this article we prove the Hyers.Ulam stability of trigonometric functional equations.
 Keywords
Hyers-Ulam stability;trigonometric functional equation;
 Language
English
 Cited by
1.
Ulam-Hyers Stability of Trigonometric Functional Equation with Involution, Journal of Function Spaces, 2015, 2015, 1  crossref(new windwow)
2.
On a Generalized Hyers-Ulam Stability of Trigonometric Functional Equations, Journal of Applied Mathematics, 2012, 2012, 1  crossref(new windwow)
 References
1.
J. Aczel, Lectures on Functional Equations in Several Variables, Academic Press, New York-London, 1966

2.
J. Aczel and J. Dhombres, Functional Equations in Several Variables, Cambridge University Press, New York-Sydney, 1989

3.
J. A. Baker, On a functional equation of Aczel and Chung, Aequationes Math. 46 (1993), 99-111 crossref(new window)

4.
J. A. Baker, The stability of cosine functional equation, Proc. Amer. Math. Soc. 80 (1980), 411-416 crossref(new window)

5.
J. Chung, A distributional version of functional equations and their stabilities, Nonlinear Analysis 62 (2005), 1037-1051 crossref(new window)

6.
J. Chung, Stability of functional equations in the space distributions and hyperfunctions, J. Math. Anal. Appl. 286 (2003), 177-186 crossref(new window)

7.
J. Chung, Distributional method for d'Alembert equation, Arch. Math. 85 (2005), 156-160. crossref(new window)

8.
S. Czerwik, Stability of Functional Equations of Ulam-Hyers-Rassias Type, Hadronic Press, Inc., Palm Harbor, Florida, 2003

9.
D. H. Hyers and Th. M. Rassias, Approximate homomorphisms, Aequationes Math. 44 (1992), 125-153 crossref(new window)

10.
D. H. Hyers, G. Isac, and Th. M. Rassias, Stability of Functional Equations in Several Variables, Birkhauser, 1998

11.
D. H. Hyers, On the stability of the linear functional equations, Proc. Nat. Acad. Sci. U.S.A. 27 (1941), 222-224 crossref(new window)

12.
S.-M. Jung, Hyers-Ulam-Rassias Stability of Functional Equations in Mathematical Analysis, Hadronic Press, Inc., Palm Harbor, Florida, 2001

13.
K. W. Jun and H. M. Kim, Stability problem for Jensen-type functional equations of cubic mappings, Acta Mathematica Sinica, English Series 22 (2006), no. 6, 1781-1788 crossref(new window)

14.
C. G. Park, Hyers-Ulam-Rassias stability of homomorphisms in quasi-Banach algabras, Bull. Sci. Math. 132 (2008), 87-96 crossref(new window)

15.
Th. M. Rassias, On the stability of functional equations in Banach spaces, J. Math. Anal. Appl. 251 (2000), 264-284 crossref(new window)

16.
Th. M. Rassias, On the stability of linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), 297-300 crossref(new window)

17.
L. Szekelyhidi, The stability of sine and cosine functional equations, Proc. Amer. Math. Soc. 110 (1990), 109-115 crossref(new window)

18.
S. M. Ulam, A Collection of Mathematical Problems, Interscience Publ., New York, 1960