JOURNAL BROWSE
Search
Advanced SearchSearch Tips
COMPATIBLE MAPS AND COMMON FIXED POINTS IN MENGER PROBABILISTIC METRIC SPACES
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
COMPATIBLE MAPS AND COMMON FIXED POINTS IN MENGER PROBABILISTIC METRIC SPACES
Kutukcu, Servet; Sharma, Sushil;
  PDF(new window)
 Abstract
In the present work, we introduce two types of compatible maps and prove a common fixed point theorem for such maps in Menger probabilistic metric spaces. Our result generalizes and extends many known results in metric spaces and fuzzy metric spaces.
 Keywords
Menger space;t-norm;common fixed point;compatible maps;
 Language
English
 Cited by
1.
COMPATIBLE MAPS OF TWO TYPES AND COMMON FIXED POINT THEOREMS ON INTUITIONISTIC FUZZY METRIC SPACE,;

호남수학학술지, 2010. vol.32. 2, pp.283-298 crossref(new window)
1.
Common fixed point theorems in Menger spaces with common property (E.A), Computers & Mathematics with Applications, 2010, 60, 12, 3152  crossref(new windwow)
2.
Some Common Fixed Point Theorems in Menger PM Spaces, Fixed Point Theory and Applications, 2010, 2010, 1, 819269  crossref(new windwow)
3.
COMPATIBLE MAPS OF TWO TYPES AND COMMON FIXED POINT THEOREMS ON INTUITIONISTIC FUZZY METRIC SPACE, Honam Mathematical Journal, 2010, 32, 2, 283  crossref(new windwow)
 References
1.
Y. J. Cho, H. K. Pathak, S. M. Kang, and J. S. Jung, Common fixed points of compatible maps of type (β) on fuzzy metric spaces, Fuzzy Sets and Systems 93 (1998), 99-111. crossref(new window)

2.
G. Constantin and I. Istratescu, Elements of Probabilistic Analysis, Ed. Acad. Bucuresti and Kluwer Acad. Publ., 1989.

3.
O. Hadzic, Common fixed point theorems for families of mapping in complete metric space, Math. Japon. 29 (1984), 127-134.

4.
T. L. Hicks, Fixed point theory in probabilistic metric spaces, Rev. Res. Novi Sad 13 (1983), 63-72.

5.
I. Istratescu, On some fixed point theorems in generalized Menger spaces, Boll. Un. Mat. Ital. 5 (13-A) (1976), 95-100.

6.
I. Istratescu, On generalized complete probabilistic metric spaces, Rev. Roum. Math. Pures Appl. XXV (1980), 1243-1247.

7.
G. Jungck, Compatible mappings and common fixed points, Internat. J. Math. Sci. 9(1986), 771-779. crossref(new window)

8.
S. Kutukcu, Topics in intuitionistic fuzzy metric spaces, J. Comput. Anal. Appl. 9 (2007), no. 2, 173-180.

9.
S. Kutukcu, A. Tuna, and A. T. Yakut, Generalized contraction mapping principle in intuitionistic Menger spaces and an application to differential equations, Appl. Math. Mech. 28 (2007), no. 6, 779-809. crossref(new window)

10.
K. Menger, Statistical metric, Proc. Nat. Acad. 28 (1942), 535-537. crossref(new window)

11.
S. N. Mishra, Common fixed points of compatible mappings in PM-spaces, Math. Japon. 36 (1991), 283-289.

12.
E. Pap, O. Hadzic, and R. Mesiar, A fixed point theorem in probabilistic metric spaces and an application, J. Math. Anal. Appl. 202 (1996), 433-449. crossref(new window)

13.
B. Schweizer and A. Sklar, Probabilistic Metric Spaces, North-Holland, Amsterdam, 1983.

14.
B. Schweizer, A. Sklar, and E. Thorp, The metrization of SM-spaces, Pasific J. Math. 10 (1960), 673-675. crossref(new window)

15.
V. M. Sehgal and A. T. Bharucha-Reid, Fixed point of contraction mapping on PM spaces, Math. Systems Theory 6 (1972), 97-100. crossref(new window)

16.
S. Sessa, On weak commutativity condition of mappings in fixed point considerations, Publ. Inst. Math. Beograd 32 (1982), 149-153.

17.
S. Sharma, Common fixed point theorems in fuzzy metric spaces, Fuzzy Sets and Systems 127 (2002), 345-352. crossref(new window)

18.
B. Singh and S. Jain, A fixed point theorem in Menger space through weak compatibility, J. Math. Anal. Appl. 301 (2005), 439-448. crossref(new window)