JOURNAL BROWSE
Search
Advanced SearchSearch Tips
PERMUTATION FUNCTIONS ARISING FROM INTERPOLATIONS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
PERMUTATION FUNCTIONS ARISING FROM INTERPOLATIONS
Jeong, Sangtae; Lee, Hyeon-Ok;
  PDF(new window)
 Abstract
In this paper, we give three criteria for non-polynomial functions interpolated from the set of univariate polynomials of degree less than m over a finite field to be a permutation on the same set.
 Keywords
-permutation functions;-permutation polynomials;extended Hermite-Dickson criterion;Carlitz polynomials;digit derivatives;
 Language
English
 Cited by
 References
1.
L. Carlitz, A set of polynomials, Duke Math. J. 6 (1940), 486–504 crossref(new window)

2.
K. Conrad, The digit principle, J. of Number Theory 84 (2000), 230–257 crossref(new window)

3.
D. Goss, Basic Structures of Function Field Arithmetic, Springer, Berlin, 1996

4.
C. Hermite, Sur les fonctions de sept letters, C. R. Acad. Sci. Paris 57 (1863), 750–757, Oeuvres, Vol.2, 280–288, Gauthier-Villars, Paris, 1908

5.
S. Jeong, Hyperdifferential operators and continuous functions on function fields, J. of Number Theory 89 (2001), 165–178 crossref(new window)

6.
S. Jeong, Am-Permutation Polynomials, J. Aust. Math. Soc. 80 (2006), 149–158 crossref(new window)

7.
R. Lidl and H. Niederreiter, Finite fields, Encyclopedia Math. Appl. Vol. 20, Addison-Wesley, Reading, Mass 1983