JOURNAL BROWSE
Search
Advanced SearchSearch Tips
COMPATIBLE MAPPINGS OF TYPE (I) AND (II) ON INTUITIONISTIC FUZZY METRIC SPACES IN CONSIDERATION OF COMMON FIXED POINT
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
COMPATIBLE MAPPINGS OF TYPE (I) AND (II) ON INTUITIONISTIC FUZZY METRIC SPACES IN CONSIDERATION OF COMMON FIXED POINT
Sharma, Sushil; Deshpande, Bhavana;
  PDF(new window)
 Abstract
In this paper, we formulate the definition of compatible mappings of type (I) and (II) in intuitionistic fuzzy metric spaces and prove a common fixed point theorem by using the conditions of compatible mappings of type (I) and (II) in complete intuitionistic fuzzy metric spaces. Our results intuitionistically fuzzify the result of Cho, Sedghi, and Shobe [4].
 Keywords
triangular norms;triangular conorms;intuitionistic fuzzy metric spaces;compatible mappings of type (I) and (II);common fixed points;
 Language
English
 Cited by
1.
(DS)-WEAK COMMUTATIVITY CONDITION AND COMMON FIXED POINT IN INTUITIONISTIC MENGER SPACES,;;;

한국수학교육학회지시리즈B:순수및응용수학, 2011. vol.18. 3, pp.201-217 crossref(new window)
2.
COMMON FIXED POINT THEOREM FOR MULTIMAPS ON MENGER L-FUZZY METRIC SPACE,;;

한국수학교육학회지시리즈B:순수및응용수학, 2013. vol.20. 1, pp.11-23 crossref(new window)
1.
(DS)-WEAK COMMUTATIVITY CONDITION AND COMMON FIXED POINT IN INTUITIONISTIC MENGER SPACES, The Pure and Applied Mathematics, 2011, 18, 3, 201  crossref(new windwow)
2.
COMMON FIXED POINT THEOREM FOR MULTIMAPS ON MENGER L-FUZZY METRIC SPACE, The Pure and Applied Mathematics, 2013, 20, 1, 11  crossref(new windwow)
3.
Fixed point and (DS)-weak commutativity condition in intuitionistic fuzzy metric spaces, Chaos, Solitons & Fractals, 2009, 42, 5, 2722  crossref(new windwow)
 References
1.
C. Alaca, D. Turkoglu, and C. Yildiz, Fixed points in intuitionistic fuzzy metric spaces, Chaos, Solitons and Frectals 29 (2006), 1073–1078 crossref(new window)

2.
K. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems 20 (1986), 87–96 crossref(new window)

3.
S. Banach, Theoriles operations Linearies Manograie Mathematyezne, Warsaw, Poland

4.
Y. J. Cho, S. Sedghi, and N. Shobe, Generalized fixed point theorems for compatible mappings with some types in fuzzy metric spaces, Chaos Solitons and Fractals, article in press crossref(new window)

5.
D. Dubois and H. Prade, Fuzzy Sets: theory and applications to policy analysis and informations systems, Plnum Press. New York, 1980

6.
M. Edelstein, On fixed and periodic points under contractive mappings, J. London Math. Soc. 37 (1962), 74–79 crossref(new window)

7.
MS. El Naschie, On the uncertainty of cantorian geometry and two-slit experiment, Chaos, Solitons and Fractals 9 (1998), 517–529 crossref(new window)

8.
MS. El Naschie, On the verification of heterotic strings theory and e(1) theory, Chaos, Solitons and Fractals 11 (2000), 2397–2408 crossref(new window)

9.
MS. El Naschie, The two slit experiment as the foundation of E-infinity of high energy physics, Chaos, Solitions and Fractals 25 (2005), 509–514 crossref(new window)

10.
MS. El Naschie, 'tHooft ultimate building blocks and space-time an infinite dimensional set of transfinite discrete points, Chaos, Solitons and Fractals 25 (2005), 521–524 crossref(new window)

11.
A. George and P. Veeramani, On some results in fuzzy metric spaces, Fuzzy Sets and Systems 64 (1994), 395–399 crossref(new window)

12.
M. Grabiec, Fixed points in fuzzy metric spaces, Fuzzy Sets and System 27 (1988), 385–389 crossref(new window)

13.
V. Gregory, S. Romaguera, and P. Veeramani, A note on intuitionistic fuzzy metric spaces, Chaos, Solitions and Fractals 28 (2006), 902–905 crossref(new window)

14.
G. Jungck, Commuting maps and fixed points, Amer Math Monthly 83 (1976), 261–263 crossref(new window)

15.
G. Jungck, Compatible mappings and common fixed point, Int. J. Math. Math. Sci. 9 (1986), 771–779 crossref(new window)

16.
G. Jungck, P. P. Murthy, and Y. J. Cho, Compatible mappings of type (A) and common fixed points, Math. Jponica 38 (1993), 381–390

17.
E. P. Klement, Operations on fuzzy sets an axiomatic approach, Information Science 27 (1984), 221–232 crossref(new window)

18.
E. P. Klement, R. Mesiar, and E. Pap, Triangular Norm, Kluwer Academic Pub. Trends in logic 8, Dordrecnt 2000

19.
O. Kramosil and J. Michalek, Fuzzy metric and statistical metric spaces, Kybernetica 11 (1975), 326–334

20.
R. Lowen, Fuzzy Set Theory, Kluwer, Academic Pub. Dordrecht, 1996

21.
K. Menger, Statistical metric, Proc. Nat. Acad. Sci. 28 (1942), 535–537 crossref(new window)

22.
J. H. Park, Intuitionistic fuzzy metric spaces, Chaos, Solitions and Fractals 22 (2004), 1039–1046 crossref(new window)

23.
H. K. Pathak, Y. J. Cho, and S. M. Kang, Compatible mappings of type (P) and fixed point theorems in metric spaces and probabilistic metric spaces, Novi Sad J. Math. 26 (1996), 87–109

24.
H. K. Pathak, N. Mishra, and A. K. Kalinde, Common fixed point theorems with applications to nonlinear integral equation, Demonstratio Math 32 (1999), 517–564

25.
J. L. Rodriguez and S. Ramagurea, The Hausdorff fuzzy metric on compact sets, Fuzzy Set System 147 (2004), 273–283 crossref(new window)

26.
R. Sadati and J. H. Park, On the intuitionistic topological spaces, Chaos, Solutions and Fractals 27 (2006), 331–344 crossref(new window)

27.
B. Schweizer and A Sklar, Statistical metric spaces, Pacific J Math. 10 (1960), 314–334

28.
S. Sessa, On some weak commutativity condition of mappings in fixed point consideration, Publ. Inst. Math. (Beograd) 32 (1982), 149–153

29.
S. Sharma and B. Deshpande, Common fixed point theorems for finite number of mappings without continuity and compatibility on intuitionistic fuzzy metric spaces, Chaos Solitons and Fractals, article in press crossref(new window)

30.
D. Turkoglu, C. Alaca, Y. J. Cho, and C. Yildiz, Common fixed point theorems in intuitionistic fuzzy metric spaces, J. Appl. Math. and Computing 22 (2006), no. 1-2, 411–424 crossref(new window)

31.
R. R. Yager, On a class of weak triangular norm operators, Information Sciences 96 (1997), no. 1-2, 47–78 crossref(new window)