JOURNAL BROWSE
Search
Advanced SearchSearch Tips
ON THE COMPUTATIONS OF CONTIGUOUS RELATIONS FOR 2F1 HYPERGEOMETRIC SERIES
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
ON THE COMPUTATIONS OF CONTIGUOUS RELATIONS FOR 2F1 HYPERGEOMETRIC SERIES
Rakha, Medhat A.; Ibrahim, Adel K.; Rathie, Arjun K.;
  PDF(new window)
 Abstract
Contiguous relations for hypergeometric series contain an enormous amount of hidden information. Applications of contiguous relations range from the evaluation of hypergeometric series to the derivation of summation and transformation formulas for such series. In this paper, a general formula joining three Gauss functions of the form [, ; ; z] with arbitrary integer shifts is presented. Our analysis depends on using shifted operators attached to the three parameters , and . We also, discussed the existence condition of our formula.
 Keywords
hypergeometric function;contiguous relations;
 Language
English
 Cited by
1.
On some new contiguous relations for the Gauss hypergeometric function with applications, Computers & Mathematics with Applications, 2011, 61, 3, 620  crossref(new windwow)
2.
Classical Klein–Gordon solutions, symplectic structures, and isometry actions on AdS spacetimes, Journal of Geometry and Physics, 2013, 70, 130  crossref(new windwow)
 References
1.
M. Abramowitz and I. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York, Dover, 1972

2.
P. Agarwal, Contiguous relations for bilateral basic hypergeometric series, Int. J. Math. Sci. 3 (2004), 375–388

3.
G. E. Andrews, R. Askey, and R. Roy, Special Functions, Cambridge University Press, Cambridge, 1999

4.
G. Gasper and M. Rahman, Basic Hypergeometric Series, Encyclopedia of Mathematics and its Applications, 35, Cambridge University Press, Cambridge 1990

5.
C. F. Gauss, Disquisitiones generales circa seriem infinitam, Comm. soc. reg. sci. Gott. rec. Vol. II; reprinted in Werke 3 (1876), 123–162

6.
D. Gupta, Contiguous relations, basic hypergeometric functions and orthogonal polynomials III. Associated contiguous dual q−Hann polynomials, J. Comput. Appl. Math. 68 (1996), no. 1-2, 115–149

7.
D. Gupta, Contiguous relations, continued fractions and orthogonality, Trans. Amer. Math. Soc. 350 (1998), no. 2, 679–808

8.
Hypergeometric2F1, http://functions.wolfram.com/HypergeometricFunctions/Hypergeometric2F1/17/02/01/

9.
A. K. Ibrahim and M. A. Rakha, Contiguous relations for $_2F_1$ hypergeometric series, Submitted for Publications

10.
M. Ismail and C. Libis, Contiguous relations, basic hypergeometric functions and orthogonal polynomials, J. Math. Anal. Appl. 141 (1989), no. 2, 349–372

11.
J. L. Lavoie, F. Grondin, and A. K. Rathie, Generalizations of Watson's theorem on the sum of $_3F_2$, Indian J. Math. 32 (1992), 23–32

12.
J. L. Lavoie, F. Grondin, and A. K. Rathie, Generalizations of Whipple's theorem on the sum of a $_3F_2$, J. Comput. Appl. Math. 72 (1996), 293–300 crossref(new window)

13.
J. L. Lavoie, F. Grondin, A. K. Rathie, and K. Arora, Generalizations of Dixon's theorem on the sum a $_3F_2$, Math. Comp. 63 (1994), 367–376

14.
W. Miller, Jr., Lie theory and generalizations of hypergeometric functions, SIAM J. Appl. Math. 25 (1973), no. 1, 226–235

15.
T. Morita, Use of Gauss contiguous relation in computing the hypergeometric functions $_2F_1[n+\frac{1}{\2},n+\frac{1}{\2};m;z]$, Inderdiscip. Inform. Sci. 2 (1996), no. 1, 63–74

16.
P. Paule, Contiguous Relations and Creative Telescopy, Technical report, RISC, Austria, 2001

17.
E. D. Rainville, The contiguous function relations for ,$_pF_q$ with applications to Bateman's $J^{u,v}_n$ and Rice's $H_n(\zeta,p,v)$, Bull. Amer. Math. Soc. Ser. 2 51 (1945), 714–723 crossref(new window)

18.
E. D. Rainville, Special Functions, The Macmillan Company, New York, 1960

19.
M. A. Rakha and A. K. Ibrahim, On the contiguous relations of hypergeometric series, J. of Comput. Appl. Math. 192 (2006), 396–410 crossref(new window)

20.
M. A. Rakha and A. K. Ibrahim, Contiguous relations and their computations for 2F1 hypergeometric series, Comput. Math. Appl. (56) (2008), 1918–1926

21.
K. C. Richards, Shap power mean bounds for Gaussian hypergeometric functions, J. Math. Anal. Appl. 38 (2005), 303–313 crossref(new window)

22.
R. Vidunas, A generalization of Kummer's identity, Rocky Mountain J. Math. 32(2002), no. 2, 919–935 crossref(new window)

23.
R. Vidunas, Contiguous relations of hypergeometric series, J. Math. Anal. Appl. 135 (2003), 507–519 crossref(new window)