JOURNAL BROWSE
Search
Advanced SearchSearch Tips
SPECIFIC EXAMPLES OF EXPONENTIAL WEIGHTS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
SPECIFIC EXAMPLES OF EXPONENTIAL WEIGHTS
Jung, Hee-Sun; Sakai, Ryozi;
  PDF(new window)
 Abstract
Let : be an even function. Then we will consider the exponential weights w(x)
 Keywords
exponential weights;
 Language
English
 Cited by
1.
Lp-CONVERGENCE OF HIGHER ORDER HERMITE OR HERMITE-FEJÉR INTERPOLATION POLYNOMIALS WITH EXPONENTIAL-TYPE WEIGHTS,;;

Advanced Studies in Contemporary Mathematics, 2015. vol.25. 3, pp.317-332
1.
Convergence and Divergence of Higher-Order Hermite or Hermite-Fejér Interpolation Polynomials with Exponential-Type Weights, ISRN Mathematical Analysis, 2012, 2012, 1  crossref(new windwow)
2.
Higher order derivatives of approximation polynomials on R $\mathbb{R}$, Journal of Inequalities and Applications, 2015, 2015, 1  crossref(new windwow)
3.
Interpolation Polynomials of Entire Functions for Erdös-Type Weights, Journal of Mathematics, 2013, 2013, 1  crossref(new windwow)
4.
Positive Interpolation Operators with Exponential-Type Weights, Journal of Applied Mathematics, 2013, 2013, 1  crossref(new windwow)
5.
Derivatives of Orthonormal Polynomials and Coefficients of Hermite-Fejér Interpolation Polynomials with Exponential-Type Weights, Journal of Inequalities and Applications, 2010, 2010, 1  crossref(new windwow)
6.
Mean and uniform convergence of Lagrange interpolation with the Erdős-type weights, Journal of Inequalities and Applications, 2012, 2012, 1, 237  crossref(new windwow)
7.
Some Properties of Orthogonal Polynomials for Laguerre-Type Weights, Journal of Inequalities and Applications, 2011, 2011, 1, 372874  crossref(new windwow)
8.
An estimate for derivative of the de la Vallée Poussin mean, Mathematical journal of Ibaraki University, 2015, 47, 0, 1  crossref(new windwow)
9.
Higher order Hermite-Fejér interpolation polynomials with Laguerre-type weights, Journal of Inequalities and Applications, 2011, 2011, 1, 122  crossref(new windwow)
10.
On the Favard-Type Theorem and the Jackson-Type Theorem (II), ISRN Applied Mathematics, 2011, 2011, 1  crossref(new windwow)
11.
The de la Vallée Poussin Mean and Polynomial Approximation for Exponential Weight, International Journal of Analysis, 2015, 2015, 1  crossref(new windwow)
 References
1.
Y. Kanjin and R. Sakai, Pointwise convergence of Hermite-Fejer interpolation of higher order for Freud weights, Tohoku. Math. 46 (1994), 181–206 crossref(new window)

2.
A. L. Levin and D. S. Lubinsky, Orthogonal Polynomials for Exponential Weights, Springer, New York, 2001

3.
P. Vertesi, Hermite-Fejer interpolations of higher order. I, Acta Math. Hungar. 54(1989), 135–152 crossref(new window)