JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Lq-ESTIMATES OF MAXIMAL OPERATORS ON THE p-ADIC VECTOR SPACE
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Lq-ESTIMATES OF MAXIMAL OPERATORS ON THE p-ADIC VECTOR SPACE
Kim, Yong-Cheol;
  PDF(new window)
 Abstract
For a prime number p, let denote the p-adic field and let denote a vector space over which consists of all d-tuples of . For a function f , we define the Hardy-Littlewood maximal function of f on by , where |E| denotes the Haar measure of a measurable subset E of and denotes the p-adic ball with center x and radius . If 1 < q , then we prove that is a bounded operator of into ; moreover, is of weak type (1, 1) on , that is to say, |{>}| > 0 for any f .
 Keywords
p-adic vector space;the Hardy-Littlewood maximal function;
 Language
English
 Cited by
1.
Carleson measures and the BMO space on thep-adic vector space, Mathematische Nachrichten, 2009, 282, 9, 1278  crossref(new windwow)
 References
1.
Z. I. Borevich and I. R. Shafarevich, Number Theory, Academic press, New York, 1966 crossref(new window)

2.
S. Haran, Riesz potentials and explicit sums in arithmetic, Invent. Math. 101 (1990), 697–703 crossref(new window)

3.
S. Haran, Analytic potential theory over the p-adics, Ann. Inst. Fourier(Grenoble) 43 (1993), no. 4, 905–944

4.
J. Marcinkiewicz, Sur l'interpolation d'op´erateurs, C. R. Acad. Sci. Paris 208 (1939), 1272–1273

5.
M. A. Naimark, Normed Rings, Moscow, Nauka, 1968

6.
E. M. Stein, Harmonic Analysis: Real variable methods, orthogonality, and oscillatory integrals, Princeton Univ. Press, 1993

7.
V. S. Vladimirov and I. V. Volovich, p-adic quantum mechanics, Commun. Math. Phys. 123 (1989), 659–676 crossref(new window)

8.
V. S. Vladimirov, I. V. Volovich, and E. I. Zelenov, p-adic Analysis and Mathematical Physics, Series on Soviet & East European Mathematics, Vol. I, World Scientific, Singapore, 1992