JOURNAL BROWSE
Search
Advanced SearchSearch Tips
STRONG CONVERGENCE OF AN ITERATIVE METHOD FOR FINDING COMMON ZEROS OF A FINITE FAMILY OF ACCRETIVE OPERATORS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
STRONG CONVERGENCE OF AN ITERATIVE METHOD FOR FINDING COMMON ZEROS OF A FINITE FAMILY OF ACCRETIVE OPERATORS
Jung, Jong-Soo;
  PDF(new window)
 Abstract
Strong convergence theorems on viscosity approximation methods for finding a common zero of a finite family accretive operators are established in a reflexive and strictly Banach space having a uniformly Gteaux differentiable norm. The main theorems supplement the recent corresponding results of Wong et al. [29] and Zegeye and Shahzad [32] to the viscosity method together with different control conditions. Our results also improve the corresponding results of [9, 16, 18, 19, 25] for finite nonexpansive mappings to the case of finite pseudocontractive mappings.
 Keywords
strong convergence;variational inequalities;nonexpansive mapping;fixed points;accretive operator;resolvent;sunny and nonexpansive retraction;strictly convex;uniformly Gteaux differentiable norm;
 Language
English
 Cited by
1.
VISCOSITY METHODS OF APPROXIMATION FOR A COMMON SOLUTION OF A FINITE FAMILY OF ACCRETIVE OPERATORS,;;;

East Asian mathematical journal , 2011. vol.27. 1, pp.11-21
1.
Viscosity approximation method with Meir-Keeler contractions for common zero of accretive operators in Banach spaces, Fixed Point Theory and Applications, 2015, 2015, 1  crossref(new windwow)
 References
1.
K. Aoyama, Y. Kimura, W. Takahashi, and M. Toyoda, Approximation of common fixed points of a countable family of nonexpansive mappings in Banach spaces, Nonlinear Anal. 67 (2007), 2350–2360 crossref(new window)

2.
T. D. Benavides, G. L. Acedo, and H. K. Xu, Iterative solutions for zeros of accretive operators, Math. Nach. 248-249 (2003), 62–71 crossref(new window)

3.
H. Breziz and P. L. Lions, Products infinis de resolvents, Israel J. Math. 29 (1978), 329–345 crossref(new window)

4.
R. E. Bruck and G. B. Passty, Almost convergence of the infinite product of resolvents in Banach spaces, Nonlinear Anal. 3 (1979), 279–282 crossref(new window)

5.
R. E. Bruck and S. Reich, Nonexpansive projections and resolvents in Banach spaces, Houston J. Math. 3 (1977), 459–470

6.
R. Chen and Z. Zhu, Viscosity approximation fixed points for nonexpansive and macctrive operators, Fixed Point Theory Appl. 2006 (2006), 1–10 crossref(new window)

7.
J. Diestel, Geometry of Banach Spaces, Lectures Notes in Math. 485, Springer-Verlag, Berlin, Heidelberg, 1975 crossref(new window)

8.
K. Goebel and S. Reich, Uniform Convexity, Hyperbolic Geometry and Nonexpansive Mappings, Marcel Dekker, New York and Basel, 1984

9.
J. S. Jung, Convergence of nonexpansive iteration process in Banach spaces, J. Math. Anal. Appl. 273 (2002), 153–159 crossref(new window)

10.
J. S. Jung, Viscosity approximation methods for a family of finite nonexpansive mappings in Banach spaces, Nonlinear Anal. 64 (2006), 2536–2552 crossref(new window)

11.
J. S. Jung and C. Morales, The Mann process for perturbed m-accretive operators in Banach spaces, Nonlinear Anal. 46 (2001), 231–243 crossref(new window)

12.
J. S. Jung and D. R. Sahu, Convergence of approximating paths to solutions of variational inequalities involving non-Lipschitzian mappings, J. Korean Math. Soc. 45 (2008), no. 2, 377–392 crossref(new window)

13.
J. S. Jung and W. Takahashi, Dual convergence theorems for the nfinite products of resolvents in Banach spaces, Kodai Math. J. 14 (1991), 358–365

14.
J. S. Jung and W. Takahashi, On the asymptotic behavior of infinite products of resolvents in Banach spaces, Nonlinear Anal. 20 (1993), 469–479 crossref(new window)

15.
T. H. Kim and H. K. Xu, Strong convergence of modified Mann iterations, Nonlinear Anal. 61 (2005), 51–60 crossref(new window)

16.
W. A. Kirk, On successive approximations for nonexpansive mappings in Banach spaces, Glasgow Math. J. 12 (1971), 6–9

17.
L. S. Liu, Iterative processes with errors for nonlinear strongly accretive mappings in Banach spaces, J. Math. Anal. Appl. 194 (1995), 114–125 crossref(new window)

18.
G. Liu, D. Lei, and S. Li, Approximating fixed points of nonexpansive mappings, Internat. J. Math. Math. Sci. 24 (2000), 173–177

19.
M. Maiti and B. Saha, Approximating fixed points of nonexpansive and generalized nonexpansive mappings, Internat. J. Math. Math. Sci. 16 (1993), 81–86

20.
H. Miyake and W. Takahashi, Approximating zero points of accretive operators with compact domains in general Banach spaces, Fixed Point Theory Appl. 2005 (2005), no. 1, 93–102 crossref(new window)

21.
A. Moudafi, Viscosity approximation methods for fixed-points problems, J. Math. Anal. Appl. 241 (2000), 46–55 crossref(new window)

22.
X. Qin and Y. Su, Approximation of a zero point of accretive operator in Banach spaces, J. Math. Anal. Appl. 329 (2007), 415–424 crossref(new window)

23.
S. Reich, On infinite products of resolvents, Atti. Accad. Naz. Lincei 63 (1977), 338–340

24.
S. Reich, Weak convergence theorems for nonexpansive mappings in Banach spaces, J. Math. Anal. Appl. 67 (1979), 274–276 crossref(new window)

25.
H. F. Senter and W. G. Dotson Jr, Approximating fixed points of nonexpansive mappings, Proc. Amer. Math. Soc. 44 (1974), 375–380

26.
Y. Song and R. Chen, Strong convergence theorems on an iterative method for a family of finite nonexpansive mappings, Applied. Math. Comput. 180 (2006), 275–287 crossref(new window)

27.
T. Suzuki, Strong convergence of Krasnoselskii and Mann's type sequences for one parameter nonexpansive semigroups without Bochner integral, J. Math. Anal. Appl. 305 (2005), 227–239 crossref(new window)

28.
W. Takahashi, Nonlinear Functional Analysis, Yokohama Publishers, Yokohama, 2000

29.
N. C. Wong, D. R. Sahu, and J. C. Yao, Solving variational inequalities involving nonexpansive type mappings, Nonlinear Anal. 69 (2008), 4732–4753 crossref(new window)

30.
H. K. Xu, Viscosity approximation methods for nonexpansive mappings, J. Math. Anal. Appl. 298 (2004), 279–291 crossref(new window)

31.
H. K. Xu, Strong convergence of an iterative method for nonexpansive and accretive operators, J. Math. Anal. Appl. 314 (2006), 631–643 crossref(new window)

32.
H. Zegeye and N. Shahzad, Strong convergence theorems for a common zero of a finite family of accretive operators, Nonlinear Anal. 66 (2007), 1161–1169 crossref(new window)