ON INTUITIONISTIC FUZZY SUBSPACES

- Journal title : Communications of the Korean Mathematical Society
- Volume 24, Issue 3, 2009, pp.433-450
- Publisher : The Korean Mathematical Society
- DOI : 10.4134/CKMS.2009.24.3.433

Title & Authors

ON INTUITIONISTIC FUZZY SUBSPACES

Ramadan, Ahmed Abd El-Kader; El-Latif, Ahmed Aref Abd;

Ramadan, Ahmed Abd El-Kader; El-Latif, Ahmed Aref Abd;

Abstract

We introduce a new concept of intuitionistic fuzzy topological subspace, which coincides with the usual concept of intuitionistic fuzzy topological subspace due to Samanta and Mondal [18] in the case that for A X. Also, we introduce and study some concepts such as continuity, separation axioms, compactness and connectedness in this sense.

Keywords

intuitionistic fuzzy subspace;intuitionistic fuzzy (continuity, separation axioms, compactness and connectedness);

Language

English

References

1.

K. Atanassov, Intuitionistic fuzzy sets, VII ITKR's Session, Sofia (September, 1983) (in Bularian)

3.

K. Atanassov, New operators defined over the intuitionistic fuzzy sets, Fuzzy Sets and Systems 61 (1993), no. 2, 131–142

4.

C. L. Chang, Fuzzy topological spaces, J. Math. Anall. Apll. 24 (1968), 182–190

5.

K. C. Chattopadhyay, R. N. Hazra, and S. K. Samanta, Gradation of openness: fuzzy topology, Fuzzy Sets and Systems 94 (1992), 237–242

6.

K. C. Chattopadhyay and S. K. Samanta, Fuzzy topology: fuzzy closure operator, fuzzy compactness and fuzzy connectedness, Fuzzy Sets and Systems 54 (1993), 207–212

7.

D. Coker, An introduction to intuitionistic fuzzy topological spaces, Fuzzy Sets and Systems 88 (1997), 81–89

8.

D. Coker and A. H. Es, On fuzzy compactness in intuitionistic fuzzy topological spaces, J. Fuzzy Mathematics 3 (1995), no. 4, 899–909

9.

M. Demirci, Neighborhood structures in smooth topological spaces, Fuzzy Sets and Systems 92 (1997), 123–128

10.

U. Hohle and A. P. Sostak, A general theory of fuzzy topological spaces, Fuzzy Sets and Systems 73 (1995), 131–149

12.

Y. C. Kim and S. E. Abbas, Connectedness in intuitionistic fuzzy topological spaces, Commun. Korean Math. Soc. 20 (2005), no. 1, 117–134

13.

E. P. Lee and Y. B. Im, Mated fuzzy topological spaces, Int. Journal of Fuzzy Logic and Intelligent Systems 11 (2001), no. 2, 161–165

14.

W. K. Min and C. K. Park, Some results on intuitionistic fuzzy topological spaces defined by intuitionistic gradation of openness, Commun. Korean Math. Soc. 20 (2005), no. 4, 791–801

15.

P. M. Pu and Y. M. Liu, Fuzzy topology I: Neighborhood structure of a fuzzy point and Moor-Smith convergence, J. Math. Anal. Appl. 76 (1980), 571–599

17.

S. K. Samanta and T. K. Mondal. Intuitionistic gradation of openness: intuitionistic fuzzy topology, Busefal 73 (1997), 8–17

18.

S. K. Samanta and T. K. Mondal. On intuitionistic gradation of openness, Fuzzy Sets and Systems 31 (2002), 323–336

19.

A. P. Sostak, On a fuzzy topological structure, Supp. Rend. Circ. Math. Palermo (Ser.II) 11 (1985), 89–103

20.

A. P. Sostak, On the neighbourhood structure of a fuzzy topological space, Zb. Rodova Univ. Nis, ser Math. 4 (1990), 7–14

22.

A. M. Zahran, On fuzzy subspaces, Kyungpook Math. J. 41 (2001), 361–369