JOURNAL BROWSE
Search
Advanced SearchSearch Tips
ON REES MATRIX REPRESENTATIONS OF ABUNDANT SEMIGROUPS WITH ADEQUATE TRANSVERSALS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
ON REES MATRIX REPRESENTATIONS OF ABUNDANT SEMIGROUPS WITH ADEQUATE TRANSVERSALS
Gao, Zhen Lin; Liu, Xian Ge; Xiang, Yan Jun; Zuo, He Li;
  PDF(new window)
 Abstract
The concepts of *-relation of a (-)semigroup and -adequate transversal of a (-)abundant semigroup are defined in this note. Then we develop a matrix type theory for abundant semigroups. We give some equivalent conditions of a Rees matrix semigroup being abundant and some equivalent conditions of an abundant Rees matrix semigroup having an adequate transversal. Then we obtain some Rees matrix representations for abundant semigroups with adequate transversals by the above theories.
 Keywords
abundant semigroup;adequate semigroup;adequate transversal;-adequate transversal;
 Language
English
 Cited by
 References
1.
T. B. Blyth, Almeida, and M. H. Santos, On quasi-orthodox semigroups with inverse transversals, Proc. Edinburgh Math. Soc. 40 (1997), 505–514 crossref(new window)

2.
T. K. Dutta and N. C. Adhikari, On Noetherian $\Gamma$-semigroup, Kyungppok Math. J. 36 (1996), 85–95

3.
A. EI-Qallali, On the construction of a class of abundant semigroups, Acta Math. Hung. 56 (1990), no. 1-2, 77–91 crossref(new window)

4.
A. EI-Qallali, Abundant semigroups with a multiplicative type A transversal, Semigroup Forum 47 (1993), 327–340 crossref(new window)

5.
A. EI-Qallali, Quasi-Adequate semigroups II, Semigroup Forum 44 (1992), 273–282 crossref(new window)

6.
J. Fountain, Abundant semigroups, Proc. Edinburgh Math. Soc. 22 (1979), 103–129

7.
Z. L. Gao, On generalized abundant semigroups, (to appear)

8.
J. M. Howie, An Introduction to Semigroup Theorem, Academic Press, London, 1976

9.
D. B. McAlister and R. B. McFadden, Semigroups with inverse transversals as matrix semigroups, J. Math. Oxford (2) 35 (1984), no. 140, 455–474 crossref(new window)

10.
N. K. Saha, The maximum idempotent-separating congruence on an inverse $\Gamma$-semigroups, Kyungpook Math. J. 34 (1994,) no. 1, 59–66

11.
M. K. Sen and N. K. Saha, On $\Gamma$-semigroup I, Bull Calcutta Math. Soc. 78 (1986), 180–186

12.
O. Steinfeld, On a generalization of completely 0-simple semigroups, Acta Sci. Math.(Szeged) 28 (1967), 135–145