JOURNAL BROWSE
Search
Advanced SearchSearch Tips
CATEGORICAL PROPERTY OF INTUITIONISTIC TOPOLOGICAL SPACES
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
CATEGORICAL PROPERTY OF INTUITIONISTIC TOPOLOGICAL SPACES
Lee, Seok-Jong; Chu, Jae-Myoung;
  PDF(new window)
 Abstract
We obtain some characterizations of continuous, open and closed functions in intuitionistic topological spaces. Moreover we reveal that the category of topological spaces is a bireflective full subcategory of the category of intuitionistic topological spaces.
 Keywords
intuitionistic set;intuitionistic topological space;continuous function;open function;closed function;
 Language
English
 Cited by
1.
FUZZY δ-TOPOLOGY AND COMPACTNESS, Communications of the Korean Mathematical Society, 2012, 27, 2, 357  crossref(new windwow)
 References
1.
K. T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems 20 (1986), 87-96. crossref(new window)

2.
K. T. Atanassov, More on intuitionistic fuzzy sets, Fuzzy Sets and Systems 33 (1989), no. 1, 37-45. crossref(new window)

3.
K. T. Atanassov, Answer to D. Dubois, S. Gottwald, P. Hajek, J. Kacprzyk and H. Prade's paper: Terminological difficulties in fuzzy set theory-the case of 'intuitionistic fuzzy sets', Fuzzy Sets and Systems 156 (2005), no. 3, 496-499 crossref(new window)

4.
K. T. Atanassov and S. P. Stoeva, Intuitionistic fuzzy sets,in Proceedings of the Polish Symposium on Interval & Fuzzy Mathematics (Poznan, 1983), (Poznan), Wydawn. Politech. Poznan. (1983), 13-16

5.
S. Bayhan and D. Coker, On separation axioms in intuitionistic topological spaces, Int. J. Math. Math. Sci. 27 (2001), no. 10, 621-630 crossref(new window)

6.
S. Bayhan and D. Coker, Pairwise separation axioms in intuitionistic topological spaces, Hacet. J. Math. Stat. 34S (2005), 101-114

7.
D. C¸ oker, An introduction to intuitionistic fuzzy topological spaces, Fuzzy Sets and Systems 88 (1997), 81–89 crossref(new window)

8.
D. Coker, An introduction to fuzzy subspaces in intuitionistic fuzzy topological spaces, J. Fuzzy Math. 4 (1996), no. 4, 749-764

9.
D. Coker, An introduction to intuitionistic topological spaces, Bulletin for Studies and Exchanges on Fuzziness and its Applications 81 (2000), 51–56

10.
H. Herrlich and G. E. Strecker, Category Theory: an introduction. Boston, Mass.: Allyn and Bacon Inc., 1973.