JOURNAL BROWSE
Search
Advanced SearchSearch Tips
A SIMPLE PROOF OF THE p-ADIC VERSION OF THE SOBOLEV EMBEDDING THEOREM
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
A SIMPLE PROOF OF THE p-ADIC VERSION OF THE SOBOLEV EMBEDDING THEOREM
Kim, Yong-Cheol;
  PDF(new window)
 Abstract
We give a simple proof of certain mapping properties of the p-adic Riesz potential and Bessel potential, and the p-adic version of the Sobolev embedding theorem obtained in [6].
 Keywords
p-adic vector space;the p-adic Riesz and Bessel potential;Sobolev embedding theorem;
 Language
English
 Cited by
1.
Hardy-Littlewood-Sobolev Inequalities onp-Adic Central Morrey Spaces, Journal of Function Spaces, 2015, 2015, 1  crossref(new windwow)
2.
Sobolev Spaces on Locally Compact Abelian Groups: Compact Embeddings and Local Spaces, Journal of Function Spaces, 2014, 2014, 1  crossref(new windwow)
 References
1.
Z. I. Borevich and I. R. Shafarevich, Number Theory, Academic press, New York, 1966.

2.
S. Haran, Riesz potentials and explicit sums in arithmetic, Invent. Math. 101 (1990), 697–703. crossref(new window)

3.
S. Haran, Analytic potential theory over the p-adics, Ann. Inst. Fourier(Grenoble) 43 (1993), no. 4, 905–944. crossref(new window)

4.
Y.-C. Kim, Carleson measures and the BMO space on the p-adic vector space, Math. Nachr. 282 (2009), no. 9, 1278–1304. crossref(new window)

5.
E. M. Stein, Harmonic Analysis; Real variable methods, orthogonality, and oscillatory integrals, Princeton Univ. Press, 1993.

6.
M. H. Taibleson, Fourier Analysis on Local Fields, Princeton Univ. Press, 1975.

7.
V. S. Vladimirov and I. V. Volovich, p-adic quantum mechanics, Commun. Math. Phys. 123 (1989), 659–676. crossref(new window)

8.
V. S. Vladimirov, I. V. Volovich, and E. I. Zelenov, p-adic Analysis and mathematical physics, Series on Soviet & East European Mathematics, Vol. I, World Scientific, Singapore, 1992.