JOURNAL BROWSE
Search
Advanced SearchSearch Tips
GEODESIC SPHERES AND BALLS OF THE HEISENBERG GROUPS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
GEODESIC SPHERES AND BALLS OF THE HEISENBERG GROUPS
Jang, Changrim; Park, Ji-Hye; Park, Keun;
  PDF(new window)
 Abstract
Let be the (2n+1)-dimensional Heisenberg group equipped with a left-invariant metric. In this paper we study the Gaussian curvatures of the geodesic spheres and the volumes of geodesic balls in .
 Keywords
Heisenberg group;geodesic sphere;geodesic ball;
 Language
English
 Cited by
 References
1.
J. Berndt, F. Tricerri, and L. Vanhecke, Geometry of generalized Heisenberg groups and their Damak-Ricci harmonic extensions, Lecture Notes in Mathematics, Vol. 1598, (1995), 51–68.

2.
M. P. do Carmo, Riemannian Geometry, Birkhauser, Boston, 1992.

3.
P. Eberlein, Geometry of 2-step Nilpotent Lie groups with a left invariant metric, Ann. Scient. Ecole Normale Sup. 27 (1994), 611–660.

4.
S. Gallot, D. Hulin, and J. Lafontaine, Riemannian Geometry, Springer-Verlag, Berlin, 1990.

5.
C. Jang, J. Kim, Y. Kim, and K. Park, Conjugate points on the quaternionic Heisenberg group, J. Korean Math. Soc. 40 (2003), no. 1, 1–14.

6.
C. Jang and K. Park, Conjugate points on 2-step nilpotent groups, Geom. Dedicata 79 (2000), 65–80. crossref(new window)

7.
A. Kaplan, Riemannian nilmanifolds attached to Clifford modules, Geom. Dedicata 11 (1981), 127–136.

8.
A. Kaplan, On the geometry of groups of Heisenberg type, Bull. London Math. Soc. 15 (1983), 35–42. crossref(new window)

9.
R. Kim, On the geodesic spheres of the Heisenberg groups $H^3$, Dissertations, University of Ulsan, 2003.

10.
M. S. Raghunathan, Discrete Subgroups of Lie Groups, Springer-Verlag, 1972.

11.
G. Walschap, Cut and conjugate Loci in two-step nilpotent Lie groups, Jour. of Geometric Analysis 7 (1997), 343–355. crossref(new window)

12.
T. J. Wilmore, Riemannian Geometry, Oxford Univ. Press, 1993.