JOURNAL BROWSE
Search
Advanced SearchSearch Tips
N-IDEALS OF SUBTRACTION ALGEBRAS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
N-IDEALS OF SUBTRACTION ALGEBRAS
Jun, Young-Bae; Kavikumar, Jacob; So, Keum-Sook;
  PDF(new window)
 Abstract
Using -structures, the notion of an -ideal in a subtraction algebra is introduced. Characterizations of an -ideal are discussed. Conditions for an -structure to be an -ideal are provided. The description of a created -ideal is established.
 Keywords
subtraction algebra;-ideal;-subalgebra;created -ideal;
 Language
English
 Cited by
1.
THE ESSENCE OF SUBTRACTION ALGEBRAS BASED ON N-STRUCTURES,;;

대한수학회논문집, 2012. vol.27. 1, pp.15-22 crossref(new window)
2.
A COUPLED 𝒩-STRUCTURE WITH AN APPLICATION IN A SUBTRACTION ALGEBRA,;;;

호남수학학술지, 2014. vol.36. 4, pp.863-884 crossref(new window)
1.
A COUPLED 𝒩-STRUCTURE WITH AN APPLICATION IN A SUBTRACTION ALGEBRA, Honam Mathematical Journal, 2014, 36, 4, 863  crossref(new windwow)
2.
THE ESSENCE OF SUBTRACTION ALGEBRAS BASED ON N-STRUCTURES, Communications of the Korean Mathematical Society, 2012, 27, 1, 15  crossref(new windwow)
3.
Anti fuzzy filters of $$CI$$ C I -algebras, Afrika Matematika, 2014, 25, 4, 1197  crossref(new windwow)
 References
1.
J. C. Abbott, Sets, Lattices and Boolean Algebras, Allyn and Bacon, Inc., Boston, Mass. 1969.

2.
Y. B. Jun and H. S. Kim, On ideals in subtraction algebras, Sci. Math. Jpn. 65 (2007), no. 1, 129-134.

3.
Y. B. Jun, H. S. Kim, and E. H. Roh, Ideal theory of subtraction algebras, Sci. Math. Jpn. 61 (2005), no. 3, 459-464.

4.
Y. B. Jun, K. J. Lee, and S. Z. Song, N-ideals of BCK/BCI-algebras, J. Chungcheong Math. Soc. 22 (2009), 417-437.

5.
Y. B. Jun, C. H. Park, and E. H. Roh, Order systems, ideals and right fixed maps of subtraction algebras, Commun. Korean Math. Soc. 23 (2008), no. 1, 1-10. crossref(new window)

6.
B. M. Schein, Difference semigroups, Comm. Algebra 20 (1992), no. 8, 2153-2169. crossref(new window)

7.
B. Zelinka, Subtraction semigroups, Math. Bohem. 120 (1995), no. 4, 445-447.