JOURNAL BROWSE
Search
Advanced SearchSearch Tips
FULL QUADRATURE SUMS FOR GENERALIZED POLYNOMIALS WITH FREUD WEIGHTS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
FULL QUADRATURE SUMS FOR GENERALIZED POLYNOMIALS WITH FREUD WEIGHTS
Joung, Hae-Won;
  PDF(new window)
 Abstract
Generalized nonnegative polynomials are defined as products of nonnegative polynomials raised to positive real powers. The generalized degree can be defined in a natural way. In this paper we extend quadrature sums involving pth powers of polynomials to those for generalized polynomials.
 Keywords
quadrature sums;Freud weights;generalized polynomials;
 Language
English
 Cited by
 References
1.
R. Askey, R. DeVore, G. Freud, J. Musielak, J. Peetre, and T. Popoviciu, Proposed problems, Proceedings of the Conference on the Constructive Theory of Functions (Approximation Theory) (Budapest, 1969), pp. 533-538. Akademiai Kiado, Budapest, 1972.

2.
T. Erdelyi, Bernstein and Markov type inequalities for generalized nonnegative polynomials, Canad. J. Math. 43 (1991), no. 3, 495-505. crossref(new window)

3.
T. Erdelyi, Remez-type inequalities on the size of generalized polynomials, J. London Math. Soc. (2) 45 (1992), no. 2, 255-264. crossref(new window)

4.
T. Erdelyi, A. Mate, and P. Nevai, Inequalities for generalized nonnegative polynomials, Constr. Approx. 8 (1992), no. 2, 241-255. crossref(new window)

5.
T. Erdelyi and P. Nevai, Generalized Jacobi weights, Christoffel functions, and zeros of orthogonal polynomials, J. Approx. Theory 69 (1992), no. 2, 111-132. crossref(new window)

6.
G. Freud, On Markov-Bernstein-type inequalities and their applications, J. Approximation Theory 19 (1977), no. 1, 22-37. crossref(new window)

7.
H. Joung, Estimates of Christoffel functions for generalized polynomials with exponential weights, Commun. Korean Math. Soc. 14 (1999), no. 1, 121-134.

8.
A. L. Levin and D. S. Lubinsky, Canonical products and the weights exp$(-{\left|}x{\right|}^{\alpha})$, ${\alpha}\;>\;1$ with applications, J. Approx. Theory 49 (1987), no. 2, 149-169. crossref(new window)

9.
A. L. Levin and D. S. Lubinsky, Christoffel functions, orthogonal polynomials, and Nevai’s conjecture for Freud weights, Constr. Approx. 8 (1992), no. 4, 463-535. crossref(new window)

10.
D. S. Lubinsky, A. Mate, and P. Nevai, Quadrature sums involving pth powers of polynomials, SIAM J. Math. Anal. 18 (1987), no. 2, 531-544. crossref(new window)

11.
D. S. Lubinsky, H. N. Mhaskar, and E. B. Saff, A proof of Freud’s conjecture for exponential weights, Constr. Approx. 4 (1988), no. 1, 65-83. crossref(new window)

12.
D. S. Lubinsky and E. B. Saff, Strong Asymptotics for Extremal Polynomials Associated with Weights on R, Lecture Notes in Mathematics, 1305. Springer-Verlag, Berlin, 1988.

13.
D. S. Lubinsky and D. M. Matjila, Full quadrature sums for pth powers of polynomials with Freud weights, J. Comput. Appl. Math. 60 (1995), no. 3, 285-296. crossref(new window)

14.
H. N. Mhaskar and E. B. Saff, Extremal problems for polynomials with exponential weights, Trans. Amer. Math. Soc. 285 (1984), no. 1, 203-234. crossref(new window)

15.
P. Nevai, Orthogonal polynomials, Mem. Amer. Math. Soc. 18 (1979), no. 213, v+185 pp.

16.
Y. Xu, Mean convergence of generalized Jacobi series and interpolating polynomials. II, J. Approx. Theory 76 (1994), no. 1, 77-92. crossref(new window)