JOURNAL BROWSE
Search
Advanced SearchSearch Tips
SCREEN CONFORMAL EINSTEIN LIGHTLIKE HYPERSURFACES OF A LORENTZIAN SPACE FORM
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
SCREEN CONFORMAL EINSTEIN LIGHTLIKE HYPERSURFACES OF A LORENTZIAN SPACE FORM
Jin, Dae-Ho;
  PDF(new window)
 Abstract
In this paper, we study the geometry of lightlike hypersurfaces of a semi-Riemannian manifold. We prove a classification theorem for Einstein lightlike hypersurfaces M of a Lorentzian space form subject such that the second fundamental forms of M and its screen distribution S(TM) are conformally related by some non-vanishing smooth function.
 Keywords
Einstein lightlike hypersurfaces;screen conformal;Lorentzian space forms;
 Language
English
 Cited by
1.
A CHARACTERIZATION THEOREM FOR LIGHTLIKE HYPERSURFACES OF SEMI-RIEMANNIAN MANIFOLDS OF QUASI-CONSTANT CURVATURES,;

East Asian mathematical journal, 2014. vol.30. 1, pp.15-22 crossref(new window)
1.
Lightlike Hypersurfaces of a Golden Semi-Riemannian Manifold, Mediterranean Journal of Mathematics, 2017, 14, 5  crossref(new windwow)
2.
A CHARACTERIZATION THEOREM FOR LIGHTLIKE HYPERSURFACES OF SEMI-RIEMANNIAN MANIFOLDS OF QUASI-CONSTANT CURVATURES, East Asian mathematical journal, 2014, 30, 1, 15  crossref(new windwow)
 References
1.
C. Atindogbe and K. L. Duggal, Conformal screen on lightlike hypersurfaces, Int. J. Pure Appl. Math. 11 (2004), no. 4, 421-442.

2.
C. Atindogbe, J.-P. Ezin, and J. Tossa, Lightlike Einstein hypersurfaces in Lorentzian manifolds with constant curvature, Kodai Math. J. 29 (2006), no. 1, 58-71. crossref(new window)

3.
K. L. Duggal and A. Bejancu, Lightlike Submanifolds of Semi-Riemannian Manifolds and Applications, Kluwer Acad. Publishers, Dordrecht, 1996.

4.
K. L. Duggal and D. H. Jin, Null curves and Hypersurfaces of Semi-Riemannian Manifolds, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2007.

5.
K. L. Duggal and D. H. Jin, A Classification of Einstein lightlike hypersurfaces of a Lorentzian space form, to appear in J. Geom. Phys.

6.
D. H. Jin, Screen conformal lightlike hypersurfaces of a semi-Riemannian space form, J. Korea Soc. Math. Educ. Ser. B Pure Appl. Math. 16 (2009), no. 3, 271-276.

7.
D. N. Kupeli, Singular Semi-Riemannian Geometry, Mathematics and Its Applications, vol. 366, Kluwer Acad. Publishers, Dordrecht, 1996.

8.
G. de Rham, Sur la reductibilit`e d’un espace de Riemann, Comment. Math. Helv. 26 (1952), 328-344. crossref(new window)

9.
P. J. Ryan, Homogeneity and some curvature conditions for hypersurfaces, Tohoku Math. J. (2) 21 (1969), 363-388. crossref(new window)