JOURNAL BROWSE
Search
Advanced SearchSearch Tips
C2 DIFFEOMORPHISMS WITH THE INVERSE SHADOWING PROPERTY
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
C2 DIFFEOMORPHISMS WITH THE INVERSE SHADOWING PROPERTY
Lee, Man-Seob;
  PDF(new window)
 Abstract
Let f be a -diffeomorphism on a closed surface which satisfies the Axiom A. Then f is in the -interior of the set of all diffeomorphisms having the inverse shadowing property with respect to the class of the continuous methods if and only if f satisfies the strong transversality condition.
 Keywords
Axiom A;shadowing property;inverse shadowing;strong transversality condition;hyperbolic;basic set;
 Language
English
 Cited by
1.
C2-stably inverse shadowing diffeomorphisms, Dynamical Systems, 2011, 26, 2, 161  crossref(new windwow)
 References
1.
R. Corless and S. Pilyugin, Approximate and real trajectories for generic dynamical systems, J. Math. Anal. Appl. 189 (1995), no. 2, 409-423. crossref(new window)

2.
P. Kloeden and J. Ombach, Hyperbolic homeomorphisms and bishadowing, Ann. Polon. Math. 65 (1997), no. 2, 171-177.

3.
K. Lee, Continuous inverse shadowing and hyperbolicity, Bull. Austral. Math. Soc. 67 (2003), no. 1, 15-26. crossref(new window)

4.
J. Lewowicz, Persistence in expansive systems, Ergodic Theory Dynam. Systems 3 (1983), no. 4, 567-578.

5.
J. Palis and W. de Melo, Geometric Theory of Dynamical Systems: An Introduction, Translated from the Portuguese by A. K. Manning. Springer-Verlag, New York-Berlin, 1982.

6.
S. Pilygin, Inverse shadowing by continuous methods, Discrete Contin. Dyn. Syst. 8 (2002), no. 1, 29-38. crossref(new window)

7.
S. Pilyugin and K. Sakai, $C^0$ transversality and shadowing properties, Tr. Mat. Inst. Steklova 256 (2007), Din. Sist. i Optim., 305-319; translation in Proc. Steklov Inst. Math. 256 (2007), no. 1, 290-305

8.
C. Robinson, Structural stability of $C^1$ diffeomorphisms, J. Differential Equations 22 (1976), no. 1, 28-73. crossref(new window)

9.
K. Sakai, Diffeomorphisms with the shadowing property, J. Austral. Math. Soc. Ser. A 61 (1996), no. 3, 396-399. crossref(new window)

10.
P. Walters, On the pseudo-orbit tracing property and its relationship to stability, The structure of attractors in dynamical systems (Proc. Conf., North Dakota State Univ., Fargo, N.D., 1977), pp. 231-244, Lecture Notes in Math., 668, Springer, Berlin, 1978.