JOURNAL BROWSE
Search
Advanced SearchSearch Tips
INTUITIONISTIC FUZZY θ-CLOSURE AND θ-INTERIOR
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
INTUITIONISTIC FUZZY θ-CLOSURE AND θ-INTERIOR
Lee, Seok-Jong; Eoum, Youn-Suk;
  PDF(new window)
 Abstract
The concept of intuitionistic fuzzy -interior operator is introduced and discussed in intuitionistic fuzzy topological spaces. As applications of this concept, intuitionistic fuzzy strongly -continuous, intuitionistic fuzzy -continuous, and intuitionistic fuzzy weakly continuous functions are characterized in terms of intuitionistic fuzzy -interior operator.
 Keywords
intuitionistic fuzzy -interior;intuitionistic fuzzy strongly -continuous;intuitionistic fuzzy -continuous;intuitionistic fuzzy weakly continuous;
 Language
English
 Cited by
1.
FUZZY δ-TOPOLOGY AND COMPACTNESS,;;

대한수학회논문집, 2012. vol.27. 2, pp.357-368 crossref(new window)
2.
Intuitionistic Fuzzy Theta-Compact Spaces,;;

International Journal of Fuzzy Logic and Intelligent Systems, 2013. vol.13. 3, pp.224-230 crossref(new window)
3.
Intuitionistic Fuzzy δ-continuous Functions,;;

International Journal of Fuzzy Logic and Intelligent Systems, 2013. vol.13. 4, pp.336-344 crossref(new window)
4.
Intuitionistic Fuzzy Rough Approximation Operators,;;

International Journal of Fuzzy Logic and Intelligent Systems, 2015. vol.15. 3, pp.208-215 crossref(new window)
1.
Intuitionistic Fuzzy δ-continuous Functions, International Journal of Fuzzy Logic and Intelligent Systems, 2013, 13, 4, 336  crossref(new windwow)
2.
Intuitionistic Fuzzy Theta-Compact Spaces, International Journal of Fuzzy Logic and Intelligent Systems, 2013, 13, 3, 224  crossref(new windwow)
3.
FUZZY δ-TOPOLOGY AND COMPACTNESS, Communications of the Korean Mathematical Society, 2012, 27, 2, 357  crossref(new windwow)
4.
Intuitionistic Fuzzy Topologies Induced by Intuitionistic Fuzzy Approximation Spaces, International Journal of Fuzzy Systems, 2016  crossref(new windwow)
5.
Intuitionistic Fuzzy Rough Approximation Operators, The International Journal of Fuzzy Logic and Intelligent Systems, 2015, 15, 3, 208  crossref(new windwow)
 References
1.
K. T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems 20 (1986), no. 1, 87-96. crossref(new window)

2.
D. Coker, An introduction to intuitionistic fuzzy topological spaces, Fuzzy Sets and Systems 88 (1997), no. 1, 81-89. crossref(new window)

3.
D. Coker, An introduction to fuzzy subspaces in intuitionistic fuzzy topological spaces, J. Fuzzy Math. 4 (1996), no. 4, 749-764.

4.
D. Coker and M. Demirci, On intuitionistic fuzzy points, Notes IFS 1 (1995), no. 2, 79-84.

5.
I. M. Hanafy, Intuitionistic fuzzy functions, International Journal of Fuzzy Logic and Intelligent Systems 3 (2003), no. 2, 200-205. crossref(new window)

6.
I. M. Hanafy, A. M. Abd El-Aziz, and T. M. Salman, Intuitionistic fuzzy $\theta$ -closure operator, Bol. Asoc. Mat. Venez. 13 (2006), no. 1, 27-39.

7.
S. J. Lee and E. P. Lee, Fuzzy r-preopen sets and fuzzy r-precontinuous maps, Bull. Korean Math. Soc. 36 (1999), no. 1, 91-108.

8.
M. N. Mukherjee and S. P. Sinha, On some near-fuzzy continuous functions between fuzzy topological spaces, Fuzzy Sets and Systems 34 (1990), no. 2, 245-254. crossref(new window)

9.
M. N. Mukherjee and S. P. Sinha, Fuzzy $\Theta$-closure operator on fuzzy topological spaces, Internat. J. Math. Math. Sci. 14 (1991), no. 2, 309-314. crossref(new window)