JOURNAL BROWSE
Search
Advanced SearchSearch Tips
GENERALIZED RELAXED PROXIMAL POINT ALGORITHMS INVOLVING RELATIVE MAXIMAL ACCRETIVE MODELS WITH APPLICATIONS IN BANACH SPACES
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
GENERALIZED RELAXED PROXIMAL POINT ALGORITHMS INVOLVING RELATIVE MAXIMAL ACCRETIVE MODELS WITH APPLICATIONS IN BANACH SPACES
Verma, Ram U.;
  PDF(new window)
 Abstract
General models for the relaxed proximal point algorithm using the notion of relative maximal accretiveness (RMA) are developed, and then the convergence analysis for these models in the context of solving a general class of nonlinear inclusion problems differs significantly than that of Rockafellar (1976), where the local Lipschitz continuity at zero is adopted instead. Moreover, our approach not only generalizes convergence results to real Banach space settings, but also provides a suitable alternative to other problems arising from other related fields.
 Keywords
variational inclusions;maximal relaxed accretive mapping;relative maximal accretive mapping;generalized resolvent operator;
 Language
English
 Cited by
1.
Graph convergence for the H(·,·)-accretive operator in Banach spaces with an application, Applied Mathematics and Computation, 2011, 217, 22, 9053  crossref(new windwow)
 References
1.
R. P. Agarwal and R. U. Verma, Role of relative A-maximal monotonicity in overrelaxed proximal-point algorithms with applications, J. Optim. Theory Appl. 143 (2009), no. 1, 1-15; doi 10.1017/s10957-009-9554-z. crossref(new window)

2.
J. Eckstein and D. P. Bertsekas, On the Douglas-Rachford splitting method and the proximal point algorithm for maximal monotone operators, Math. Programming 55 (1992), no. 3, Ser. A, 293-318. crossref(new window)

3.
Y. P. Fang and N. J. Huang, H-monotone operators and system of variational inclusions, Comm. Appl. Nonlinear Anal. 11 (2004), no. 1, 93-101.

4.
M. Fukushima, The primal Douglas-Rachford splitting algorithm for a class of monotone mappings with application to the traffic equilibrium problem, Math. Programming 72 (1996), no. 1, Ser. A, 1-15.

5.
R. Glowinski and P. Le Tellec, Augmented Lagrangian and Operator-Splitting Methods in Nonlinear Mechanics, SIAM Studies in Applied Mathematics, 9. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1989.

6.
H. Y. Lan, J. H. Kim, and Y. J. Cho, On a new system of nonlinear A-monotone multivalued variational inclusions, J. Math. Anal. Appl. 327 (2007), no. 1, 481-493. crossref(new window)

7.
B. Martinet, Regularisation d’inequations variationnelles par approximations successives, Rev. Francaise Inform. Rech. Oper. Ser. R-3 4 (1970), 154-158.

8.
A. Moudafi, Mixed equilibrium problems: sensitivity analysis and algorithmic aspect, Comput. Math. Appl. 44 (2002), no. 8-9, 1099-1108. crossref(new window)

9.
S. M. Robinson, Composition duality and maximal monotonicity, Math. Program. 85 (1999), no. 1, Ser. A, 1-13. crossref(new window)

10.
R. T. Rockafellar, Monotone operators and the proximal point algorithm, SIAM J. Control Optimization 14 (1976), no. 5, 877-898. crossref(new window)

11.
R. T. Rockafellar, Augmented Lagrangians and applications of the proximal point algorithm in convex programming, Math. Oper. Res. 1 (1976), no. 2, 97-116. crossref(new window)

12.
R. T. Rockafellar and R. J.-B.Wets, Variational Analysis, Springer-Verlag, Berlin, 2004.

13.
P. Tseng, Alternating projection-proximal methods for convex programming and variational inequalities, SIAM J. Optim. 7 (1997), no. 4, 951-965. crossref(new window)

14.
P. Tseng, A modified forward-backward splitting method for maximal monotone mappings, SIAM J. Control Optim. 38 (2000), no. 2, 431-446. crossref(new window)

15.
R. U. Verma, Rockafellar’s theorem on linear convergence and A-proximal point algorithm, DCDIS: Dynamics of Continuous, Discrete and Impulsive Systems (in press).

16.
U. Verma, Sensitivity analysis for generalized strongly monotone variational inclusions based on the $(A,{\eta})$-resolvent operator technique, Appl. Math. Lett. 19 (2006), no. 12, 1409-1413. crossref(new window)

17.
R. U. Verma, A-monotonicity and its role in nonlinear variational inclusions, J. Optim. Theory Appl. 129 (2006), no. 3, 457-467. crossref(new window)

18.
R. U. Verma, General system of A-monotone nonlinear variational inclusion problems with applications, J. Optim. Theory Appl. 131 (2006), no. 1, 151-157. crossref(new window)

19.
R. U. Verma, A-monotone nonlinear relaxed cocoercive variational inclusions, Cent. Eur. J. Math. 5 (2007), no. 2, 386-396. crossref(new window)

20.
R. U. Verma, General system of $(A,{\eta})$-monotone variational inclusion problems based on generalized hybrid iterative algorithm, Nonlinear Anal. Hybrid Syst. 1 (2007), no. 3, 326-335. crossref(new window)

21.
R. U. Verma, Approximation solvability of a class of nonlinear set-valued variational inclusions involving $(A,{\eta})$- monotone mappings, J. Math. Anal. Appl. 337 (2008), no. 2, 969-975. crossref(new window)

22.
R. U. Verma, On a class of nonlinear variational inequalities involving partially relaxed monotone and partially strongly monotone mappings, Math. Sci. Res. Hot-Line 4 (2000), no. 2, 57-65.

23.
R. U. Verma, Averaging techniques and cocoercively monotone mappings, Math. Sci. Res. J. 10 (2006), no. 3, 79-82.

24.
R. U. Verma, Rockafellar’s celebrated theorem based on A-maximal monotonicity design, Appl. Math. Lett. 21 (2008), no. 4, 355-360. crossref(new window)

25.
R. U. Verma, On the generalized proximal point algorithm with applications to inclusion problems, J. Ind. Manag. Optim. 5 (2009), no. 2, 381-390. crossref(new window)

26.
R. U. Verma, General implicit variational inclusion problems involving A-maximal relaxed accretive mappings in Banach spaces, Archivum Mathematicum 45 (2009), no. 3, 171-177.

27.
R. U. Verma, Generalized maximal monotonicity models and their applications to nonlinear variational inclusion problems and beyond, Int. J. Optim. Theory Methods Appl. 1 (2009), no. 2, 182-206.

28.
R. U. Verma, New proximal point algorithms based on RMM models for nonlinear variational inclusion problems, Adv. Nonlinear Var. Inequal. 12 (2009), no. 2, 91-102.

29.
R. U. Verma, Generalized first-order nonlinear evolution equations and generalized Yosida approximations based on H-maximal monotonicity frameworks, Electron. J. Differential Equations 2009 (2009), No. 85, 16 pp.

30.
R. U. Verma, A new relaxed proximal point procedure and applications to nonlinear variational inclusions, Comput. Math. Appl. 58 (2009), no. 8, 1631-1635. crossref(new window)

31.
R. U. Verma, General class of implicit inclusion problems based on A-maximal relaxed monotone models with applications, Journal of Numerical Mathematics and Stochastics 1 (2009), no. 1, 24-32.

32.
R. U. Verma, The generalized relaxed proximal point algorithm involving A-maximal relaxed accretive mappings with applications to Banach spaces, Mathematical and Computer Modelling 50 (2009), no. 7-8, 1026-1032. crossref(new window)

33.
H. K. Xu, Iterative algorithms for nonlinear operators, J. London Math. Soc. (2) 66 (2002), no. 1, 240-256. crossref(new window)

34.
H. K. Xu, Inequalities in Banach spaces with applications, Nonlinear Anal. 16 (1991), no. 12, 1127-1138. crossref(new window)

35.
E. Zeidler, Nonlinear Functional Analysis and its Applications I, Springer-Verlag, New York, 1986.

36.
E. Zeidler, Nonlinear Functional Analysis and its Applications II/A, Springer-Verlag, New York, 1990.

37.
E. Zeidler, Nonlinear Functional Analysis and its Applications II/B, Springer-Verlag, New York, New York, 1990.

38.
E. Zeidler, Nonlinear Functional Analysis and its Applications III, Springer-Verlag, New York, New York, 1984