JOURNAL BROWSE
Search
Advanced SearchSearch Tips
CHARACTERIZATIONS OF RAPIDLY DECREASING GENERALIZED FUNCTIONS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
CHARACTERIZATIONS OF RAPIDLY DECREASING GENERALIZED FUNCTIONS
Bouzar, Chikh; Saidi, Tayeb;
  PDF(new window)
 Abstract
The well-known characterizations of the Schwartz space of rapidly decreasing functions is extended to new algebras of rapidly decreasing generalized functions.
 Keywords
Schwartz space;rapidly decreasing generalized functions;Colombeau algebra;Fourier transform;
 Language
English
 Cited by
1.
Fourier analysis of generalized functions, Integral Transforms and Special Functions, 2011, 22, 4-5, 337  crossref(new windwow)
 References
1.
J. Alvarez and H. Obiedat, Characterizations of the Schwartz space S and the Beurling-Bjorck space $S_w$, Cubo 6 (2004), no. 4, 167–183.

2.
K. Benmeriem and C. Bouzar, Ultraregular generalized functions of Colombeau type, J. Math. Sci. Univ. Tokyo 15 (2008), no. 4, 427–447.

3.
H. A. Biagioni and M. Oberguggenberger, Generalized solutions to the Korteweg-de Vries and the regularized long-wave equations, SIAM J. Math. Anal. 23 (1992), no. 4, 923–940. crossref(new window)

4.
J. Chung, S. Y. Chung, and D. Kim, Une caracterisation de l’espace S de Schwartz, C. R. Acad. Sci. Paris Ser. I Math. 316 (1993), no. 1, 23–25.

5.
J. F. Colombeau, New Generalized Functions and Multiplication of Distributions, North-Holland Publishing Co., Amsterdam, 1984.

6.
A. Delcroix, Regular rapidly decreasing nonlinear generalized functions. Application to microlocal regularity, J. Math. Anal. Appl. 327 (2007), no. 1, 564–584. crossref(new window)

7.
C. Garetto, Pseudo-differential operators in algebras of generalized functions and global hypoellipticity, Acta Appl. Math. 80 (2004), no. 2, 123–174. crossref(new window)

8.
I. M. Gel’fand and G. E. Shilov, Generalized Functions, Vol. 2, Academic Press, 1967.

9.
K. Grochenig and G. Zimmermann, Spaces of test functions via the STFT, J. Funct. Spaces Appl. 2 (2004), no. 1, 25–53. crossref(new window)

10.
M. Grosser, M. Kunzinger, M. Oberguggenberger, and R. Steinbauer, Geometric Theory of Generalized Functions with Applications to General Relativity, Kluwer Academic Publishers, Dordrecht, 2001.

11.
L. Hormander, Distributions Theory And Fourier Analysis, Springer, 1983.

12.
A. I. Kashpirovski, Equality of the spaces $S^{\alpha}_{\beta}$ and $S^{\alpha}{\bigcap}S_{\beta}$, Funct. Anal. Appl. 14 (1980), p. 129. crossref(new window)

13.
M. Oberguggenberger, Regularity theory in Colombeau algebras, Bull. Cl. Sci. Math. Nat. Sci. Math. No. 31 (2006), 147–162.

14.
N. Ortner and P. Wagner, Applications of weighted $D'_{L^p}-spaces$ to the convolution of distributions, Bull. Polish Acad. Sci. Math. 37 (1989), no. 7-12, 579–595.

15.
Ya. V. Radyno, N. F. Tkhan, and S. Ramdan, The Fourier transformation in an algebra of new generalized functions, Dokl. Akad. Nauk 327 (1992), no. 1, 20–24; translation in Russian Acad. Sci. Dokl. Math. 46 (1993), no. 3, 414–417.

16.
L. Schwartz, Theorie des distributions, Hermann, Paris, 1966.

17.
L. Volevich and S. Gindikin, The Cauchy problem and related problems for convolution equations, Uspehi Mat. Nauk 27 (1972), no. 4(166), 65–143.