JOURNAL BROWSE
Search
Advanced SearchSearch Tips
FUZZY STABILITY OF A GENERALIZED QUADRATIC FUNCTIONAL EQUATION
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
FUZZY STABILITY OF A GENERALIZED QUADRATIC FUNCTIONAL EQUATION
Najati, Abbas;
  PDF(new window)
 Abstract
We prove the generalized Hyers-Ulam stability of the generalized quadratic functional equation in fuzzy Banach spaces, where r, s are non-zero rational numbers with .
 Keywords
stability;fuzzy Banach spaces;quadratic mapping;
 Language
English
 Cited by
1.
Stability of functional equations of n-Apollonius type in fuzzy ternary Banach algebras, Journal of Fixed Point Theory and Applications, 2016, 18, 4, 721  crossref(new windwow)
2.
Fixed Points and Random Stability of a Generalized Apollonius Type Quadratic Functional Equation, Fixed Point Theory and Applications, 2011, 2011, 1  crossref(new windwow)
3.
Local stability of the Pexiderized Cauchy and Jensen's equations in fuzzy spaces, Journal of Inequalities and Applications, 2011, 2011, 1, 78  crossref(new windwow)
4.
Lattictic non-archimedean random stability of ACQ functional equation, Advances in Difference Equations, 2011, 2011, 1, 31  crossref(new windwow)
5.
A functional equation related to inner product spaces in non-Archimedean L-random normed spaces, Journal of Inequalities and Applications, 2012, 2012, 1, 168  crossref(new windwow)
 References
1.
J. Aczel and J. Dhombres, Functional Equations in Several Variables, Cambridge University Press, Cambridge, 1989.

2.
D. Amir, Characterizations of Inner Product Spaces, Birkhauser, Basel, 1986.

3.
T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan 2 (1950), 64–66. crossref(new window)

4.
T. Bag and S. K. Samanta, Finite dimensional fuzzy normed linear spaces, J. Fuzzy Math. 11 (2003), no. 3, 687–705.

5.
T. Bag and S. K. Samanta, Fuzzy bounded linear operators, Fuzzy Sets and Systems 151 (2005), no. 3, 513–547. crossref(new window)

6.
P. W. Cholewa, Remarks on the stability of functional equations, Aequationes Math. 27 (1984), no. 1-2, 76–86. crossref(new window)

7.
S. Czerwik, On the stability of the quadratic mapping in normed spaces, Abh. Math. Sem. Univ. Hamburg 62 (1992), 59–64. crossref(new window)

8.
S. Czerwik, Functional Equations and Inequalities in Several Variables, World Scientific Publishing Company, New Jersey, Hong Kong, Singapore and London, 2002.

9.
P. Gavruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl. 184 (1994), no. 3, 431–436. crossref(new window)

10.
A. Grabiec, The generalized Hyers-Ulam stability of a class of functional equations, Publ. Math. Debrecen 48 (1996), no. 3-4, 217–235.

11.
D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U.S.A. 27 (1941), 222–224. crossref(new window)

12.
D. H. Hyers, G. Isac, and Th. M. Rassias, Stability of Functional Equations in Several Variables, Birkhauser, Basel, 1998.

13.
P. Jordan and J. von Neumann, On inner products in linear, metric spaces, Ann. of Math. (2) 36 (1935), no. 3, 719–723. crossref(new window)

14.
K. Jun and Y. Lee, On the Hyers-Ulam-Rassias stability of a Pexiderized quadratic inequality, Math. Inequal. Appl. 4 (2001), no. 1, 93–118.

15.
S.-M. Jung, Hyers-Ulam-Rassias Stability of Functional Equations in Mathematical Analysis, Hadronic Press, Inc., Palm Harbor, FL, 2001.

16.
Pl. Kannappan, Quadratic functional equation and inner product spaces, Results Math. 27 (1995), no. 3-4, 368–372. crossref(new window)

17.
D. Mihet and V. Radu, On the stability of the additive Cauchy functional equation in random normed spaces, J. Math. Anal. Appl. 343 (2008), no. 1, 567–572. crossref(new window)

18.
A. K. Mirmostafaee, M. Mirzavaziri, and M. S. Moslehian, Fuzzy stability of the Jensen functional equation, Fuzzy Sets and Systems 159 (2008), no. 6, 730–738. crossref(new window)

19.
A. K. Mirmostafee and M. S. Moslehian, Fuzzy versions of Hyers-Ulam-Rassias theorem, Fuzzy Sets and Systems 159 (2008), no. 6, 720–729. crossref(new window)

20.
A. K. Mirmostafee and M. S. Moslehian, Fuzzy approximately cubic mappings, Inform. Sci. 178 (2008), no. 19, 3791–3798. crossref(new window)

21.
A. Najati and C. Park, Fixed points and stability of a generalized quadratic functional equation, J. Inequal. Appl. 2009 (2009), Article ID 193035, 19 pages.

22.
C. Park, Fuzzy stability of a functional equation associated with inner product spaces, Fuzzy Sets and Systems 160 (2009), no. 11, 1632–1642. crossref(new window)

23.
C. Park, On the stability of the linear mapping in Banach modules, J. Math. Anal. Appl. 275 (2002), no. 2, 711–720. crossref(new window)

24.
Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), no. 2, 297–300. crossref(new window)

25.
Th. M. Rassias, Functional Equations, Inequalities and Applications, Kluwer Academic Publishers Co., Dordrecht, Boston, London, 2003.

26.
F. Skof, Local properties and approximation of operators, Rend. Sem. Mat. Fis. Milano 53 (1983), 113–129. crossref(new window)

27.
S. M. Ulam, A Collection of the Mathematical Problems, Interscience Publ. New York, 1960.