JOURNAL BROWSE
Search
Advanced SearchSearch Tips
PRECOVERS AND PREENVELOPES BY MODULES OF FINITE FGT-INJECTIVE AND FGT-FLAT DIMENSIONS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
PRECOVERS AND PREENVELOPES BY MODULES OF FINITE FGT-INJECTIVE AND FGT-FLAT DIMENSIONS
Xiang, Yueming;
  PDF(new window)
 Abstract
Let R be a ring and n a fixed non-negative integer. (resp. ) denotes the class of all right R-modules of FGT-injective dimensions at most n (resp. all left R-modules of FGT-flat dimensions at most n). We prove that, if R is a right -coherent ring, then every right R-module has a -cover and every left R-module has a -preenvelope. A right R-module M is called n-TI-injective in case (N,M) = 0 for any . A left R-module F is said to be n-TI-flat if (N, F) = 0 for any . Some properties of n-TI-injective and n-TI-flat modules and their relations with -(pre)covers and -preenvelopes are also studied.
 Keywords
-(pre)cover;-preenvelope;n-TI-injective module;n-TI-flat module;weakly n-Gorenstein ring;
 Language
English
 Cited by
 References
1.
F. W. Anderson and K. R. Fuller, Rings and Categories of Modules, Springer-Verlag, New York-Heidelberg, 1974.

2.
L. Bican, R. El Bashir, and E. E. Enochs, All modules have flat covers, Bull. London Math. Soc. 33 (2001), no. 4, 385–390. crossref(new window)

3.
V. Camillo, Coherence for polynomial rings, J. Algebra 132 (1990), no. 1, 72–76. crossref(new window)

4.
F. C. Cheng and Z. Yi, Homological Dimensions of Rings, Guangxi Normal University Press, Guilin, 2000.

5.
N. Q. Ding, On envelopes with the unique mapping property, Comm. Algebra 24 (1996), no. 4, 1459–1470. crossref(new window)

6.
E. Enochs, Injective and flat covers, envelopes and resolvents, Israel J. Math. 39 (1981), no. 3, 189–209. crossref(new window)

7.
E. E. Enochs and O. M. G. Jenda, Relative Homological Algebra, Walter de Gruyter, Berlin, Now York, 2000.

8.
D. J. Fieldhouse, Pure theories, Math. Ann. 184 (1969), 1–18. crossref(new window)

9.
J. R. Garcia Rozas and B. Torrecillas, Relative injective covers, Comm. Algebra 22 (1994), no. 8, 2925–2940. crossref(new window)

10.
L. X. Mao, $\Pi$-coherent dimensions and $\Pi$-coherent rings, J. Korean Math. Soc. 44 (2007), no. 3, 719–731. crossref(new window)

11.
L. X. Mao and N. Q. Ding, FI-injective and FI-flat modules, J. Algebra 309 (2007), no. 1, 367–385. crossref(new window)

12.
L. X. Mao and N. Q. Ding, Relative copure injective and copure flat modules, J. Pure Appl. Algebra 208 (2007), no. 2, 635–646. crossref(new window)

13.
J. Rada and M. Saorin, Rings characterized by (pre)envelopes and (pre)covers of their modules, Comm. Algebra 26 (1998), no. 3, 899–912. crossref(new window)

14.
J. J. Rotman, An Introduction to Homological Algebra, Academic Press, New York, 1979.

15.
M. Y. Wang, Some studies on $\Pi$-coherent rings, Proc. Amer. Math. Soc. 119 (1993), no. 1, 71–76.

16.
J. Z. Xu, Flat Covers of Modules, Lecture Notes in Mathematics, 1634. Springer-Verlag, Berlin, 1996.

17.
Y. M. Xiang, TI-injective and TI-flat modules, J. Nat. Sci. Hunan Norm. Univ., preprint.

18.
Y. M. Xiang, TI-injective and TI-flat modules, FGT–injective dimensions of ¦–coherent rings and almost excellent extension, Proc. Indian Acad. Sci. (Math. Sci.) 120 (2010), no. 2, 149–161. crossref(new window)