JOURNAL BROWSE
Search
Advanced SearchSearch Tips
EXISTENCE THEOREMS FOR FIXED FUZZY POINTS WITH CLOSED α-CUT SETS IN COMPLETE METRIC SPACES
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
EXISTENCE THEOREMS FOR FIXED FUZZY POINTS WITH CLOSED α-CUT SETS IN COMPLETE METRIC SPACES
Cho, Yeol-Je; Petrot, Narin;
  PDF(new window)
 Abstract
In this paper, some fuzzy fixed point theorems for fuzzy mappings are established by considering the nonempty closed -cut sets. Some importance observations are also discussed. Our results clearly extend, generalize and improve the corresponding results in the literatures, which have given most of their attention to the class of fuzzy sets with nonempty compact or closed and bounded -cut sets.
 Keywords
fuzzy point;fixed fuzzy point;fuzzy mapping;-cut set;orbit lower-semi continuous;
 Language
English
 Cited by
1.
On Fuzzy Fixed Points for Fuzzy Maps with Generalized Weak Property, Journal of Applied Mathematics, 2014, 2014, 1  crossref(new windwow)
2.
On Common Fixed Point Theorems in the Stationary Fuzzy Metric Space of the Bounded Closed Sets, Abstract and Applied Analysis, 2013, 2013, 1  crossref(new windwow)
 References
1.
A. Azama and I. Beg, Common fixed points of fuzzy maps, Math. Comput. Modelling 49 (2009), no. 7-8, 1331-1336. crossref(new window)

2.
R. K. Bose and D. Sahani, Fuzzy mappings and fixed point theorems, Fuzzy Sets and Systems 21 (1987), no. 1, 53-58. crossref(new window)

3.
D. Butnariu, Fixed points for fuzzy mappings, Fuzzy Sets and Systems 7 (1982), no. 2, 191-207. crossref(new window)

4.
V. D. Estruch and A. Vidal, A note on fixed fuzzy points for fuzzy mappings, Rend. Istit. Mat. Univ. Trieste 32 (2001), suppl. 2, 39-45

5.
S. Heilpern, Fuzzy mappings and fixed point theorem, J. Math. Anal. Appl. 83 (1981), no. 2, 566-569. crossref(new window)

6.
T. Kamram, Mizoguchi-Takahashi's type fixed point theorem, Comput. Math. Appl. 57 (2009), no. 3, 507-511. crossref(new window)

7.
B. S. Lee and S. J. Cho, A fixed point theorem for contractive-type fuzzy mappings, Fuzzy Sets and Systems 61 (1994), no. 3, 309-312. crossref(new window)

8.
D. Qiu and L. Shu, Supremum metric on the space of fuzzy sets and common fixed point theorems for fuzzy mappings, Inform. Sci. 178 (2008), no. 18, 3595-3604. crossref(new window)

9.
R. A. Rashwan and M. A. Ahmad, Common fixed point theorems for fuzzy mappings, Arch. Math. (Brno) 38 (2002), no. 3, 219-226.

10.
S. Sedghi, N. Shobe, and I. Altun, A fixed fuzzy point for fuzzy mappings in complete metric spaces, Math. Commun. 13 (2008), no. 2, 289-294.

11.
D. Turkoglu and B. E. Rhoades, A fixed fuzzy point for fuzzy mapping in complete metric spaces, Math. Commun. 10 (2005), no. 2, 115-121.

12.
C. K. Wong, Fuzzy points and local properties of fuzzy topology, J. Math. Anal. Appl. 46 (1974), 316-328. crossref(new window)

13.
L. A. Zadeh, Fuzzy sets, Inform. and Control 8 (1965), 338-353. crossref(new window)