JOURNAL BROWSE
Search
Advanced SearchSearch Tips
PERMUTING TRI-f-DERIVATIONS IN LATTICES
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
PERMUTING TRI-f-DERIVATIONS IN LATTICES
Yazarl, Hasret; Ozturk, Mehmet Ali;
  PDF(new window)
 Abstract
The aim of this paper is to introduce the notion of permuting tri-f-derivations in lattices and to study some properties of permuting tri-f-derivations.
 Keywords
lattice;derivation;permuting tri-derivation;permuting tri-f-derivation;
 Language
English
 Cited by
 References
1.
R. Balbes and P. Dwinger, Distributive Lattices, University of Missouri Press, Columbia, Mo., 1974.

2.
A. J. Bell, The co-information lattice, in: 4th International Symposium on Independent Component Analysis and Blind Signal Separation (ICA2003), Nara, Japan, 2003, 921-926.

3.
H. E. Bell and L. C. Kappe, Rings in which derivations satisfy certain algebraic conditions, Acta Math. Hungar. 53 (1989), no. 3-4, 339-346. crossref(new window)

4.
H. E. Bell and G. Mason, On derivations in near-rings, Near-rings and near-fields (Tubingen, 1985), 31-35, North-Holland Math. Stud., 137, North-Holland, Amsterdam, 1987.

5.
G. Birkhoof, Lattice Theory, American Mathematical Society, Colloquium, 1940.

6.
C. Carpineto and G. Romano, Information retrieval through hybrid navigation of lattice representations, Int. J. Human-Computers Studies 45 (1996), 553-558. crossref(new window)

7.
Y. Ceven, Symmetric bi-derivations of lattices, Quaest. Math. 32 (2009), no. 2, 241-245. crossref(new window)

8.
Y. Ceven and M. A. Ozturk, On the trace of a permuting tri-additive mapping in left s-unital rings, Int. J. Pure Appl. Math. 23 (2005), no. 4, 465-474.

9.
Y. Ceven and M. A. Ozturk, On f-derivations of lattices, Bull. Korean Math. Soc. 45 (2008), no. 4, 701-707. crossref(new window)

10.
C. Degang, Z. Wenxiu, D. Yeung, and E. C. C. Tsang, Rough approximations on a complete completely distributive lattice with applications to generalized rough sets, Inform. Sci. 176 (2006), no. 13, 1829-1848. crossref(new window)

11.
L. Ferrari, On derivations of lattices, Pure Math. Appl. 12 (2001), no. 4, 365-382.

12.
A. Honda and M. Grabish, Entropy of capacities on lattices and set systems, Inform. Sci. 176 (2006), no. 23, 3472-3489. crossref(new window)

13.
Y. B. Jun and X. L. Xin, On derivations of BCI-algebras, Inform. Sci. 159 (2004), no. 3-4, 167-176. crossref(new window)

14.
F. Karacal, On the direct decomposability of strong negations and S-implication operators on product lattices, Inform. Sci. 176 (2006), no. 20, 3011-3025. crossref(new window)

15.
D. Ozden, M. A. Ozturk, and Y. B. Jun, Permuting tri-derivations in prime and semi-prime gamma rings, Kyungpook Math. J. 46 (2006), no. 2, 153-167.

16.
M. A. Ozturk, Permuting tri-derivations in prime and semi-prime rings, East Asian Math. J. 15 (1999), no. 2, 177-190.

17.
M. A. Ozturk, Y. Ceven, and Y. B. Jun, Generalized derivations of BCI-algebras, Honam Math. J. 31 (2009), no. 4, 601-609. crossref(new window)

18.
M. A. Ozturk, H. Yazarli, and K. H. Kim, Permuting tri-derivations in lattices, Quaest. Math. 32 (2009), no. 3, 415-425. crossref(new window)

19.
E. Posner, Derivations in prime rings, Proc. Amer. Math. Soc. 8 (1957), 1093-1100. crossref(new window)

20.
R. S. Sandhu, Role hierarchies and constraints for lattice-based access controls, in: Proceedings of the 4th European Symposium on Research in Computer Security, Rome, Italy, 1996, 65-79.

21.
G. Szasz, Derivations of lattices, Acta Sci. Math. (Szeged) 37 (1975), 149-154.

22.
X. L. Xin, T. Y. Li, and J. H. Lu, On derivations of lattices, Inform. Sci. 178 (2008), no. 2, 307-316. crossref(new window)

23.
H. Yazarli, M. A. Ozturk, and Y. B. Jun, Tri-additive maps and permuting tri- derivations, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 54 (2005), no. 1, 1-8.

24.
J. Zhan and Y. L. Liu, On f-derivations of BCI-algebras, Int. J. Math. Math. Sci. 2005 (2005), no. 11, 1675-1684. crossref(new window)