JOURNAL BROWSE
Search
Advanced SearchSearch Tips
ASYMPTOTIC EQUIVALENCE FOR LINEAR DIFFERENTIAL SYSTEMS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
ASYMPTOTIC EQUIVALENCE FOR LINEAR DIFFERENTIAL SYSTEMS
Choi, Sung-Kyu; Koo, Nam-Jip; Lee, Keon-Hee;
  PDF(new window)
 Abstract
We investigate the asymptotic equivalence for linear differential systems by means of the notions of -similarity and strong stability.
 Keywords
linear differential system;adjoint system;strong stability;-similarity;linear asymptotic equilibrium;asymptotic equivalence;
 Language
English
 Cited by
1.
ASYMPTOTIC EQUIVALENCE BETWEEN TWO LINEAR DYNAMIC SYSTEMS ON TIME SCALES,;;

대한수학회보, 2014. vol.51. 4, pp.1075-1085 crossref(new window)
1.
ASYMPTOTIC EQUIVALENCE BETWEEN TWO LINEAR DYNAMIC SYSTEMS ON TIME SCALES, Bulletin of the Korean Mathematical Society, 2014, 51, 4, 1075  crossref(new windwow)
 References
1.
G. Ascoli, Osservazioni sopra alcune questioni di stabilita. I, Atti Accad. Naz. Lincei. Rend. Cl. Sci. Fis. Mat. Nat. (8) 9 (1950), 129-134.

2.
L. Cesari, Asymptotic Behavior and Stability Problems in Ordinary Differential Equations, Academic Press Inc., Publishers, New York; Springer-Verlag, Berlin-Gottingen-Heidelberg, 1963.

3.
S. K. Choi and N. J. Koo, Variationally stable difference systems by $n_{\infty}-similarity$, J. Math. Anal. Appl. 249 (2000), no. 2, 553-568. crossref(new window)

4.
S. K. Choi and N. J. Koo, Asymptotic equivalence between two linear Volterra difference systems, Comput. Math. Appl. 47 (2004), no. 2-3, 461-471. crossref(new window)

5.
S. K. Choi, N. J. Koo, and S. Dontha, Asymptotic property in variation for nonlinear differential systems, Appl. Math. Lett. 18 (2005), no. 1, 117-126. crossref(new window)

6.
S. K. Choi, N. J. Koo, and Y. H. Goo, Asymptotic property of nonlinear Volterra difference systems, Nonlinear Anal. 51 (2002), no. 2, Ser. A: Theory Methods, 321-337. crossref(new window)

7.
S. K. Choi, N. J. Koo, and D. M. Im, Asymptotic equivalence between linear differential systems, Bull. Korean Math. Soc. 42 (2005), no. 4, 691-701. crossref(new window)

8.
S. K. Choi, N. J. Koo, and H. S. Ryu, h-stability of differential systems via $t_{\infty}-similarity$, Bull. Korean Math. Soc. 34 (1997), no. 3, 371-383.

9.
R. Conti, Sulla t-similitudine tra matrici e la stabilita dei sistemi differenziali lineari, Atti Accad. Naz. Lincei. Rend. Cl. Sci. Fis. Mat. Nat. (8) 19 (1955), 247-250.

10.
R. Conti, Linear differential equations asymptotically equivalent to x = 0, Riv. Mat. Univ. Parma (4) 5 (1979), part 2, 847-853.

11.
W. A. Coppel, Stability and Asymptotic Behavior of Differential Equations, D. C. Heath and Company, Boston, 1965.

12.
G. A. Hewer, Stability properties of the equation of first variation by $t_{\infty}-similarity$, J. Math. Anal. Appl. 41 (1973), 336-344. crossref(new window)

13.
L. A. Lusternik and W. S. Sobolev, Functional Analysis, Science, Moscov, 1965.

14.
G. Sansone and R. Conti, Non-linear Differential Equatioins, The Macmillan Company, New York, 1964.

15.
W. F. Trench, On $t_{\infty}$ quasisimilarity of linear systems, Ann. Mat. Pura Appl. (4) 142 (1985), 293-302. crossref(new window)

16.
W. F. Trench, Linear asymptotic equilibrium and uniform, exponential, and strict stability of linear difference systems, Advances in difference equations, II. Comput. Math. Appl. 36 (1998), no. 10-12, 261-267.