JOURNAL BROWSE
Search
Advanced SearchSearch Tips
ITERATIVE METHODS FOR GENERALIZED EQUILIBRIUM PROBLEMS AND NONEXPANSIVE MAPPINGS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
ITERATIVE METHODS FOR GENERALIZED EQUILIBRIUM PROBLEMS AND NONEXPANSIVE MAPPINGS
Cho, Sun-Young; Kang, Shin-Min; Qin, Xiaolong;
  PDF(new window)
 Abstract
In this paper, a composite iterative process is introduced for a generalized equilibrium problem and a pair of nonexpansive mappings. It is proved that the sequence generated in the purposed composite iterative process converges strongly to a common element of the solution set of a generalized equilibrium problem and of the common xed point of a pair of nonexpansive mappings.
 Keywords
equilibrium problem;nonexpansive mapping;inverse-strongly monotone mapping;contractive mapping;
 Language
English
 Cited by
1.
Existence of solutions for generalized equilibrium problem in G-convex space, Computers & Mathematics with Applications, 2011, 62, 9, 3404  crossref(new windwow)
 References
1.
E. Blum and W. Oettli, From optimization and variational inequalities to equilibrium problems, Math. Student 63 (1994), no. 1-4, 123-145.

2.
F. E. Browder and W. V. Petryshyn, Construction of fixed points of nonlinear mappings in Hilbert space, J. Math. Anal. Appl. 20 (1967), 197-228. crossref(new window)

3.
L. C. Ceng and J. C. Yao, Hybrid viscosity approximation schemes for equilibrium problems and fixed point problems of infinitely many nonexpansive mappings, Appl. Math. Comput. 198 (2008), no. 2, 729-741. crossref(new window)

4.
O. Chadli, N. C. Wong and J. C. Yao, Equilibrium problems with applications to eigen-value problems, J. Optim. Theory Appl. 117 (2003), no. 2, 245-266. crossref(new window)

5.
S. S. Chang, H. W. Joseph Lee and C. K. Chan, A new method for solving equilibrium problem fixed point problem and variational inequality problem with application to optimization, Nonlinear Anal. 70 (2009), no. 9, 3307-3319. crossref(new window)

6.
J. Chen, L. Zhang and T. Fan, Viscosity approximation methods for nonexpansive mappings and monotone mappings, J. Math. Anal. Appl. 334 (2007), no. 2, 1450-1461. crossref(new window)

7.
V. Colao, G. Marino and H. K. Xu, An iterative method for finding common solutions of equilibrium and fixed point problems, J. Math. Anal. Appl. 344 (2008), no. 1, 340-352. crossref(new window)

8.
P. L. Combettes and S. A. Hirstoaga, Equilibrium programming in Hilbert spaces, J. Nonlinear Convex Anal. 6 (2005), no. 1, 117-136.

9.
H. Iiduka and W. Takahashi, Strong convergence theorems for nonexpansive mappings and inverse-strongly monotone mappings, Nonlinear Anal. 61 (2005), no. 3, 341-350. crossref(new window)

10.
S. M. Kang, S. Y. Cho and Z. Liu, Convergence of iterative sequences for generalized equilibrium problems involving inverse-strongly monotone mappings, J. Inequal. Appl. 2010 (2010), Article ID 827082, 16 pages.

11.
A. Moudafi and M. Thera, Proximal and dynamical approaches to equilibrium problems, Ill-posed variational problems and regularization techniques (Trier, 1998), 187-201, Lecture Notes in Econom. and Math. Systems, 477, Springer, Berlin, 1999.

12.
Z. Opial, Weak convergence of the sequence of successive approximation for nonexpansive mappings, Bull. Amer. Math. Soc. 73 (1967), 561-597.

13.
S. Plubtieng and R. Punpaeng, A new iterative method for equilibrium problems and fixed point problems of nonexpansive mappings and monotone mappings, Appl. Math. Comput. 197 (2008), no. 2, 548-558. crossref(new window)

14.
X. Qin, Y. J. Cho and S. M. Kang, Convergence theorems of common elements for equilibrium problems and fixed point problems in Banach spaces, J. Comput. Appl. Math. 225 (2009), no. 1, 20-30. crossref(new window)

15.
X. Qin, M. Shang and Y. Su, Strong convergence of a general iterative algorithm for equilibrium problems and variational inequality problems, Math. Comput. Modelling 48 (2008), no. 7-8, 1033-1046. crossref(new window)

16.
T. Suzuki, Strong convergence of Krasnoselskii and Mann's type sequences for one-parameter nonexpansive semigroups without Bochner integrals, J. Math. Anal. Appl. 305 (2005), no.1, 227-239. crossref(new window)

17.
S. Takahashi and W. Takahashi, Viscosity approximation methods for equilibrium problems and fixed point problems in Hilbert spaces, J. Math. Anal. Appl. 331 (2007), no. 1, 506-515. crossref(new window)

18.
S. Takahashi and W. Takahashi, Strong convergence theorem for a generalized equilibrium problem and a non-expansive mapping in a Hilbert space, Nonlinear Anal. 69 (2008), no. 3, 1025-1033. crossref(new window)

19.
H. K. Xu, Iterative algorithms for nonlinear operators, J. London Math. Soc. (2) 66 (2002), no. 1, 240-256. crossref(new window)