JOURNAL BROWSE
Search
Advanced SearchSearch Tips
STABILITY OF A QUADRATIC FUNCTIONAL EQUATION IN INTUITIONISTIC FUZZY NORMED SPACES
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
STABILITY OF A QUADRATIC FUNCTIONAL EQUATION IN INTUITIONISTIC FUZZY NORMED SPACES
Bae, Jae-Hyeong; Park, Won-Gil;
  PDF(new window)
 Abstract
In this paper, we determine some stability results concerning the 2-dimensional vector variable quadratic functional equation f(x+y, z+w) + f(x-y, z-w)
 Keywords
intuitionistic fuzzy normed space;stability;
 Language
English
 Cited by
 References
1.
T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan 2 (1950), 64-66. crossref(new window)

2.
J.-H. Bae and W.-G. Park, A functional equation originating from quadratic forms, J. Math. Anal. Appl. 326 (2007), no. 2, 1142-1148. crossref(new window)

3.
T. Bag and S. K. Samanta, Finite dimensional fuzzy normed linear spaces, J. Fuzzy Math. 11 (2003), no. 3, 687-705.

4.
V. Balopoulos, A. G. Hatzimichailidis, and B. K. Papadopoulos, Distance and similarity measures for fuzzy operators, Inform. Sci. 177 (2007), no. 11, 2336-2348. crossref(new window)

5.
L. C. Barros, R. C. Bassanezi, and P. A. Onelli, Fuzzy modelling in population dynamics, Ecol. Model 128 (2000), 27-33. crossref(new window)

6.
R. Biswas, Fuzzy inner product spaces and fuzzy norm functions, Inform. Sci. 53 (1991), 185-190. crossref(new window)

7.
S. S. Chang, J. M. Rassias, and R. Saadati, Stability of a cubic functional equation in intuitionistic random normed spaces, Appl. Math. Mech. (English Ed.) 31 (2010), no. 1, 21-26. crossref(new window)

8.
C. Felbin, Finite-dimensional fuzzy normed linear space, Fuzzy Sets and Systems 48 (1992), no. 2, 239-248. crossref(new window)

9.
G. Feng and G. Chen, Adaptive control of discrete-time chaotic systems: a fuzzy control approach, Chaos Solitons Fractals 23 (2005), no. 2, 459-467. crossref(new window)

10.
A. L. Fradkov and R. J. Evans, Control of chaos: methods and applications in engineering, Chaos, Solitons and Fractals 29 (2005), 33-56.

11.
R. Giles, A computer program for fuzzy reasoning, Fuzzy Sets and Systems 4 (1980), no. 3, 221-234. crossref(new window)

12.
L. Hong and J. Q. Sun, Bifurcations of fuzzy nonlinear dynamical systems, Commun. Nonlinear Sci. Numer. Simul. 11 (2006), no. 1, 1-12. crossref(new window)

13.
D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U.S.A. 27 (1941), 222-224. crossref(new window)

14.
D. H. Hyers, G. Isac, and T. M. Rassias, Stability of Functional Equations in Several Variables, Birkhauser, 1998.

15.
A. K. Katsaras, Fuzzy topological vector spaces. II, Fuzzy Sets and Systems 12 (1984), no. 2, 143-154. crossref(new window)

16.
S. V. Krishna and K. K. M. Sarma, Separation of fuzzy normed linear spaces, Fuzzy Sets and Systems 63 (1994), no. 2, 207-217. crossref(new window)

17.
A. K. Mirmostafaee, M. Mirzavaziri, and M. S. Moslehian, Fuzzy stability of the Jensen functional equation, Fuzzy Sets and Systems 159 (2008), no. 6, 730-738. crossref(new window)

18.
A. K. Mirmostafaee and M. S. Moslehian, Fuzzy versions of Hyers-Ulam-Rassias theorem, Fuzzy Sets and Systems 159 (2008), no. 6, 720-729. crossref(new window)

19.
A. K. Mirmostafaee and M. S. Moslehian, Fuzzy almost quadratic functions, Results Math. doi:10.1007/s00025-007-0278-9. crossref(new window)

20.
M. Mursaleen and S. A. Mohiuddine, Statistical convergence of double sequences in intuitionistic fuzzy normed spaces, Chaos Solitons Fractals 41 (2009), no. 5, 2414-2421. crossref(new window)

21.
M. Mursaleen and S. A. Mohiuddine, Nonlinear operators between intuitionistic fuzzy normed spaces and Frechet derivative, Chaos Solitons Fractals 42 (2009), no. 2, 1010-1015. crossref(new window)

22.
M. Mursaleen and S. A. Mohiuddine, On stability of a cubic functional equation in intuitionistic fuzzy normed spaces, Chaos Solitons Fractals 42 (2009), no. 5, 2997-3005. crossref(new window)

23.
J. H. Park, Intuitionistic fuzzy metric spaces, Chaos Solitons Fractals 22 (2004), no. 5, 1039-1046. crossref(new window)

24.
Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), no. 2, 297-300. crossref(new window)

25.
Th. M. Rassias, On the stability of functional equations and a problem of Ulam, Acta Appl. Math. 62 (2000), no. 1, 23-130. crossref(new window)

26.
R. Saadati, A note on "Some results on the IF-normed spaces", Chaos Solitons Fractals 41 (2009), no. 1, 206-213. crossref(new window)

27.
R. Saadati and J. H. Park, On the intuitionistic fuzzy topological spaces, Chaos Solitons Fractals 27 (2006), no. 2, 331-344. crossref(new window)

28.
B. Schweizer and A. Sklar, Statistical metric spaces, Pacific J. Math. 10 (1960), 313-334. crossref(new window)

29.
S. Shakeri, Intuitionistic fuzzy stability of Jensen type mapping, J. Nonlinear Sci. Appl. 2 (2009), no. 2, 105-112.

30.
S. Shakeri, Y. J. Cho, and R. Saadati, Generalized random stability of Jensen type mapping, Scientia Magna 5 (2009), no. 3, 20-25.

31.
B. Shieh, Infinite fuzzy relation equations with continuous t-norms, Inform. Sci. 178 (2008), no. 8, 1961-1967. crossref(new window)

32.
S. M. Ulam, Problems in modern mathematics, Science ed. New York: John Wiley & Sons; 1940 [chapter VI, Some questions in analysis: Section 1, Stability].

33.
J.-Z. Xiao and X.-H. Zhu, Fuzzy normed space of operators and its completeness, Fuzzy Sets and Systems 133 (2003), no. 3, 389-399. crossref(new window)