JOURNAL BROWSE
Search
Advanced SearchSearch Tips
FUZZY SUBGROUPS BASED ON FUZZY POINTS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
FUZZY SUBGROUPS BASED ON FUZZY POINTS
Jun, Young-Bae; Kang, Min-Su; Park, Chul-Hwan;
  PDF(new window)
 Abstract
Using the "belongs to" relation and "quasi-coincident with" relation between a fuzzy point and a fuzzy subgroup, Bhakat and Das, in 1992 and 1996, initiated general types of fuzzy subgroups which are a generalization of Rosenfeld`s fuzzy subgroups. In this paper, more general notions of "belongs to" and "quasi-coincident with" relation between a fuzzy point and a fuzzy set are provided, and more general formulations of general types of fuzzy (normal) subgroups by Bhakat and Das are discussed. Furthermore, general type of coset is introduced, and related fundamental properties are investigated.
 Keywords
(, )-fuzzy subgroup;(strong) (, )-fuzzy subgroup;(, )-fuzzy subgroup generated by a fuzzy subset;(, )-fuzzy normal subgroup;(, )-fuzzy left (resp. right) coset;(, )-level subgroup;
 Language
English
 Cited by
1.
Product of the GeneralizedL-Subgroups, Journal of Mathematics, 2016, 2016, 1  crossref(new windwow)
 References
1.
S. K. Bhakat, (${\in} {\vee}q$)-level subset, Fuzzy Sets and Systems 103 (1999), no. 3, 529-533. crossref(new window)

2.
S. K. Bhakat, (${\in}, {\in} {\vee}q$)-fuzzy normal, quasinormal and maximal subgroups, Fuzzy Sets and Systems 112 (2000), no. 2, 299-312. crossref(new window)

3.
S. K. Bhakat and P. Das, On the definition of a fuzzy subgroup, Fuzzy Sets and Systems 51 (1992), no. 2, 235-241. crossref(new window)

4.
S. K. Bhakat and P. Das, (${\in}, {\in} {\vee} q$)-fuzzy subgroup, Fuzzy Sets and Systems 80 (1996), no. 3, 359-368. crossref(new window)

5.
V. N. Dixit, R. Kumar, and N. Ajmal, Level subgroups and union of fuzzy subgroups, Fuzzy Sets and Systems 37 (1990), no. 3, 359-371. crossref(new window)

6.
D. Dubois and H. Prade, Gradual elements in a fuzzy set, Soft Comput. 12 (2008), 165-175.

7.
T. Head, A metatheorem for deriving fuzzy theorems from crisp versions, Fuzzy Sets and Systems 73 (1995), no. 3, 349-358. crossref(new window)

8.
W.-J. Liu, Fuzzy invariant subgroups and fuzzy ideals, Fuzzy Sets and Systems 8 (1982), no. 2, 133-139. crossref(new window)

9.
P. K. Maji, A. R. Roy, and R. Biswas, An application of soft sets in a decision making problem, Comput. Math. Appl. 44 (2002), no. 8-9, 1077-1083. crossref(new window)

10.
D. Molodtsov, Soft set theory-first results, Comput. Math. Appl. 37 (1999), no. 4-5, 19-31.

11.
N. P. Mukherjee and P. Bhattacharya, Fuzzy normal subgroups and fuzzy cosets, Inform. Sci. 34 (1984), no. 3, 225-239. crossref(new window)

12.
N. P. Mukherjee and P. Bhattacharya, Fuzzy groups: some group-theoretic analogs, Inform. Sci. 39 (1986), no. 3, 247-268. crossref(new window)

13.
V. Murali, Fuzzy points of equivalent fuzzy subsets, Inform. Sci. 158 (2004), 277-288. crossref(new window)

14.
P. M. Pu and Y. M. Liu, Fuzzy topology. I. Neighborhood structure of a fuzzy point and Moore-Smith convergence, J. Math. Anal. Appl. 76 (1980), no. 2, 571-599. crossref(new window)

15.
A. Rosenfeld, Fuzzy groups, J. Math. Anal. Appl. 35 (1971), 512-517. crossref(new window)

16.
X. Yuan, C. Zhang, and Y. Ren, Generalized fuzzy groups and many-valued implications, Fuzzy Sets and Systems 138 (2003), no. 1, 205-211. crossref(new window)

17.
L. A. Zadeh, Fuzzy sets, Information and Control 8 (1965), 338-353. crossref(new window)