JOURNAL BROWSE
Search
Advanced SearchSearch Tips
HYPER K-SUBALGEBRAS BASED ON FUZZY POINTS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
HYPER K-SUBALGEBRAS BASED ON FUZZY POINTS
Kang, Min-Su;
  PDF(new window)
 Abstract
Generalizations of the notion of fuzzy hyper K-subalgebras are considered. The concept of fuzzy hyper K-subalgebras of type () where , {, q, , } and . Relations between each types are investigated, and many related properties are discussed. In particular, the notion of (, )-fuzzy hyper K-subalgebras is dealt with, and characterizations of (, )-fuzzy hyper K-subalgebras are established. Conditions for an (, )-fuzzy hyper K-subalgebra to be an (, )-fuzzy hyper K-subalgebra are provided. An (, )-fuzzy hyper K-subalgebra by using a collection of hyper K-subalgebras is established. Finally the implication-based fuzzy hyper K-subalgebras are discussed.
 Keywords
hyper K-algebra;fuzzy hyper K-subalgebra (of type (, ));support;(, )-fuzzy hyper K-subalgebra;fuzzifying hyper K-subalgebra;implication-based fuzzy hyper K-subalgebra;
 Language
English
 Cited by
1.
A NEW TYPE OF HYPER K-SUBALGEBRAS,;;;

대한수학회논문집, 2013. vol.28. 4, pp.679-695 crossref(new window)
 References
1.
S. K. Bhakat and P. Das, On the definition of a fuzzy subgroup, Fuzzy Sets and Systems 51 (1992), no. 2, 235-241. crossref(new window)

2.
S. K. Bhakat and P. Das, (${\in}, {\in} {\vee}q$)-fuzzy subgroup, Fuzzy Sets and Systems 80 (1996), no. 3, 359-368. crossref(new window)

3.
A. Borumand Saeid, R. A. Borzoei, and M. M. Zahedi, (Weak) implicative hyper K-ideals, Bull. Korean Math. Soc. 40 (2003), no. 1, 123-137. crossref(new window)

4.
R. A. Borzooei, Hyper BCK and K-algebras, Ph. D. thesis, Shahid Bahonar University of Kerman, 2000.

5.
R. A. Borzooei, A. Hasankhani, M. M. Zahedi, and Y. B. Jun, On hyper K-algebras, Math. Japon. 52 (2000), no. 1, 113-121.

6.
Y. B. Jun, On fuzzy hyper K-subalgebras of hyper K-algebras, Sci. Math. 3 (2000), no. 1, 67-75

7.
Y. B. Jun, On (${\alpha}, {\beta}$)-fuzzy subalgebras of BCK/BCI-algebras, Bull. Korean Math. Soc. 42 (2005), no. 4, 703-711. crossref(new window)

8.
Y. B. Jun, Fuzzy subalgebras of type (${\alpha}, {\beta}$) in BCK/BCI-algebras, Kyungpook Math. J. 47 (2007), no. 3, 403-410.

9.
Y. B. Jun and W. H. Shim, Fuzzy positive implicative hyper K-ideals in hyper K- algebras, Honam Math. J. 25 (2003), no. 1, 43-52.

10.
Y. B. Jun and W. H. Shim, Fuzzy hyper K-ideals of hyper K-algebras, J. Fuzzy Math. 12 (2004), no. 4, 861-871.

11.
Y. B. Jun and S. Z. Song, Generalized fuzzy interior ideals in semigroups, Inform. Sci. 176 (2006), no. 20, 3079-3093. crossref(new window)

12.
Y. B. Jun, M. M. Zahedi, X. L. Xin, and R. A. Borzoei, On hyper BCK-algebras, Ital. J. Pure Appl. Math. No. 8 (2000), 127-136.

13.
F. Marty, Sur une generalization de la notion de groupe, 8th Congress Math. Scandinaves, Stockholm (1934), 45-49.

14.
V. Murali, Fuzzy points of equivalent fuzzy subsets, Inform. Sci. 158 (2004), 277-288. crossref(new window)

15.
P. M. Pu and Y. M. Liu, Fuzzy topology. I. Neighborhood structure of a fuzzy point and Moore-Smith convergence, J. Math. Anal. Appl. 76 (1980), no. 2, 571-599. crossref(new window)

16.
M. S. Ying, A new approach for fuzzy topology. I, Fuzzy Sets and Systems 39 (1991), no. 3, 303-321. crossref(new window)

17.
M. S. Ying, On standard models of fuzzy modal logics, Fuzzy Sets and Systems 26 (1988), no. 3, 357-363. crossref(new window)