JOURNAL BROWSE
Search
Advanced SearchSearch Tips
BOUNDED, COMPACT AND SCHATTEN CLASS WEIGHTED COMPOSITION OPERATORS BETWEEN WEIGHTED BERGMAN SPACES
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
BOUNDED, COMPACT AND SCHATTEN CLASS WEIGHTED COMPOSITION OPERATORS BETWEEN WEIGHTED BERGMAN SPACES
Wolf, Elke;
  PDF(new window)
 Abstract
An analytic self-map of the open unit disk in the complex plane and an analytic map on induce the so-called weighted composition operator : , , where H() denotes the set of all analytic functions on . We study when such an operator acting between different weighted Bergman spaces is bounded, compact and Schatten class.
 Keywords
weighted Bergman space;composition operator;
 Language
English
 Cited by
1.
ORDER BOUNDED WEIGHTED COMPOSITION OPERATORS, Journal of the Australian Mathematical Society, 2012, 93, 03, 333  crossref(new windwow)
 References
1.
J. Bonet, P. Domanski, and M. Lindstrom, Essential norm and weak compactness of composition operators on weighted Banach spaces of analytic functions, Canad. Math. Bull. 42 (1999), no. 2, 139-148. crossref(new window)

2.
J. Bonet, P. Domanski, M. Lindstrom, and J. Taskinen, Composition operators between weighted Banach spaces of analytic functions, J. Austral. Math. Soc. Ser. A 64 (1998), no. 1, 101-118. crossref(new window)

3.
J. Bonet, M. Lindstrom, and E. Wolf, Differences of composition operators between weighted Banach spaces of holomorphic functions, J. Austral. Math. Soc. 84 (2008), no. 1, 9-20.

4.
M. D. Contreras and A. G. Hernandez-Diaz, Weighted composition operators in weighted Banach spaces of analytic functions, J. Austral. Math. Soc. Ser. A 69 (2000), no. 1, 41-60. crossref(new window)

5.
C. Cowen and B. MacCluer, Composition Operators on Spaces of Analytic Functions, CRC Press, Boca Raton, 1995.

6.
Z. Cuckovic and R. Zhao, Weighted composition operators on the Bergman space, J. London Math. Soc. (2) 70 (2004), no. 2, 499-511. crossref(new window)

7.
P. Duren and A. Schuster, Bergman Spaces, Mathematical Surveys and Monographs 100, American Mathematical Society, Providence, RI, 2004.

8.
W. Hastings, A Carleson measure theorem for Bergman spaces, Proc. Amer. Math. Soc. 52 (1975), 237-241. crossref(new window)

9.
H. Hedenmalm, B. Korenblum, and K. Zhu, Theory of Bergman spaces, Graduate Texts in Mathematics 199, Springer-Verlag, New York, 2000.

10.
T. Kriete and B. MacCluer, Composition operators on large weighted Bergman spaces, Indiana Univ. Math. J. 41 (1992), no. 3, 755-788. crossref(new window)

11.
B. MacCluer, S. Ohno, and R. Zhao, Topological structure of the space of composition operators on $H^{\infty}$, Integral Equations Operator Theory 40 (2001), no. 4, 481-494. crossref(new window)

12.
J. Moorhouse, Compact differences of composition operators, J. Funct. Anal. 219 (2005), no. 1, 70-92. crossref(new window)

13.
P. Nieminen, Compact differences of composition operators on Bloch and Lipschitz spaces, Comput. Methods Funct. Theory 7 (2007), no. 2, 325-344. crossref(new window)

14.
N. Palmberg, Weighted composition operators with closed range, Bull. Austral. Math. Soc. 75 (2007), no. 3, 331-354. crossref(new window)

15.
J. H. Shapiro, Composition Operators and Classical Function Theory, Springer, 1993.

16.
E. Wolf, Weighted composition operators between weighted Bergman spaces, RACSAM Rev. R. Acad. Cienc. Exactas Fis Nat. Ser. A Mat. 103 (2009), no. 1, 11-15. crossref(new window)

17.
K. Zhu, Operator Theory in Function Spaces, Marcel Dekker, New York, 1990.

18.
K. Zhu, Schatten class composition operators on weighted Bergman spaces of the disk, J. Operator Theory 46 (2001), no. 1, 173-181.