JOURNAL BROWSE
Search
Advanced SearchSearch Tips
OSCILLATION BEHAVIOR OF SOLUTIONS OF THIRD-ORDER NONLINEAR DELAY DYNAMIC EQUATIONS ON TIME SCALES
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
OSCILLATION BEHAVIOR OF SOLUTIONS OF THIRD-ORDER NONLINEAR DELAY DYNAMIC EQUATIONS ON TIME SCALES
Han, Zhenlai; Li, Tongxing; Sun, Shurong; Zhang, Meng;
  PDF(new window)
 Abstract
By using the Riccati transformation technique, we study the oscillation and asymptotic behavior for the third-order nonlinear delay dynamic equations $(c(t)(p(t)x^{\Delta}(t))^{\Delta})^{\Delta}+q(t)f(x({\tau}(t)))
 Keywords
oscillation behavior;third order delay dynamic equations;time scales;
 Language
English
 Cited by
1.
New Oscillatory Behavior of Third-Order Nonlinear Delay Dynamic Equations on Time Scales, Abstract and Applied Analysis, 2014, 2014, 1  crossref(new windwow)
2.
On the oscillation for third-order nonlinear neutral delay dynamic equations on time scales, Journal of Applied Mathematics and Computing, 2016  crossref(new windwow)
3.
Oscillation criteria for certain second-order Emden-Fowler delay functional dynamic equations with damping on time scales, Advances in Difference Equations, 2015, 2015, 1  crossref(new windwow)
4.
Oscillation criteria for certain third-order variable delay functional dynamic equations on time scales, Journal of Applied Mathematics and Computing, 2013, 43, 1-2, 445  crossref(new windwow)
5.
Oscillation criteria for third order neutral Emden–Fowler delay dynamic equations on time scales, Journal of Applied Mathematics and Computing, 2016  crossref(new windwow)
6.
Oscillatory behavior of third-order nonlinear delay dynamic equations on time scales, Journal of Computational and Applied Mathematics, 2014, 256, 104  crossref(new windwow)
 References
1.
R. P. Agarwal, M. Bohner, D. O'Regan, and A. Peterson, Dynamic equations on time scales: a survey, J. Comput. Appl. Math. 141 (2002), no. 1-2, 1-26. crossref(new window)

2.
R. P. Agarwal, M. Bohner, and S. H. Saker, Oscillation of second order delay dynamic equations, Can. Appl. Math. Q. 13 (2005), no. 1, 1-17.

3.
M. Bohner and A. Peterson, Dynamic Equations on Time Scales, Birkhauser, Boston, 2001.

4.
M. Bohner and A. Peterson, Advances in dynamic Equations on Time Scales, Birkhauser, Boston, 2003.

5.
M. Bohner and S. H. Saker, Oscillation of second order nonlinear dynamic equations on time scales, Rocky Mountain J. Math. 34 (2004), no. 4, 1239-1254. crossref(new window)

6.
L. H. Erbe, Oscillation results for second order linear equations on a time scale, J. Difference Equ. Appl. 8 (2002), no. 11, 1061-1071. crossref(new window)

7.
L. Erbe, A. Peterson, and S. H. Saker, Oscillation criteria for second-order nonlinear delay dynamic equations, J. Math. Anal. Appl. 333 (2007), no. 1, 505-522. crossref(new window)

8.
L. Erbe, A. Peterson, and S. H. Saker, Asymptotic behavior of solution of a third-order nonlinear dynamic equation on time scales, J. Comput. Appl. Math. 181 (2005), no. 1, 92-102. crossref(new window)

9.
L. Erbe, A. Peterson, and S. H. Saker, Hille and Nehari type criteria for third-order dynamic equations, J. Math. Anal. Appl. 329 (2007), no. 1, 112-131. crossref(new window)

10.
Z. Han, T. Li, S. Sun, and F. Cao, Oscillation criteria for third order nonlinear delay dynamic equations on time scales, Ann. Polon. Math. 99 (2010), no. 2, 143-156. crossref(new window)

11.
Z. Han, T. Li, S. Sun, C. Zhang, and B. Han, Oscillation criteria for a class of second order neutral delay dynamic equations of Emden-Fowler type, Abstr. Appl. Anal. 2-11 (2011), Art. ID 653689, 26 pp.

12.
Z. Han, S. Sun, and B. Shi, Oscillation criteria for a class of second order Emden-Fowler delay dynamic equations on time scales, J. Math. Anal. Appl. 334 (2007), no. 2, 847-858. crossref(new window)

13.
Z. Han, S. Sun, and B. Shi, Oscillation criteria for second-order delay dynamic equations on time scales, Adv. Difference Equ. 2007 (2007), Art. ID. 70730, 16 pp.

14.
T. S. Hassan, Oscillation criteria for half-linear dynamic equations on time scales, J. Math. Anal. Appl. 345 (2008), no. 1, 176-185. crossref(new window)

15.
T. S. Hassan, Oscillation of third order nonlinear delay dynamic equations on time scales, Math. Comput. Modelling 49 (2009), no. 7-8, 1573-1586. crossref(new window)

16.
S. Hilger, Analysis on measure chains|a unified approach to continuous and discrete calculus, Results Math. 18 (1990), no. 1-2, 18-56. crossref(new window)

17.
Y. Sahiner, Oscillation of second-order delay differential equations on time scales, Non-linear Analysis, TMA 63 (2005), 1073-1080. crossref(new window)

18.
S. H. Saker, Oscillation criteria of second-order half-linear dynamic equations on time scales, J. Comput. Appl. Math. 177 (2005), no. 2, 375-387. crossref(new window)

19.
S. H. Saker, R. P. Agarwal, and D. O'Regan, Oscillation results for second-order non-linear neutral delay dynamic equations on time scales, Appl. Anal. 86 (2007), no. 1, 1-17. crossref(new window)

20.
S. Sun, Z. Han, P. Zhao, and C. Zhang, Oscillation for a class of second order Emden-Fowler delay dynamic equations on time scales, Adv. Difference Equ. 2010 (2010), Art. ID 642356, 15 pp.

21.
Z.-H. Yu and Q.-R. Wang, Asymptotic behavior of solutions of third-order nonlinear dynamic equations on time scales, J. Comput. Appl. Math. 225 (2009), no. 2, 531-540. crossref(new window)

22.
B. G. Zhang and Z. Shanliang, Oscillation of second order nonlinear delay dynamic equations on time scales, Comput. Math. Appl. 49 (2005), no. 4, 599-609. crossref(new window)