JOURNAL BROWSE
Search
Advanced SearchSearch Tips
FREE ALGEBRAS OVER A POSET IN VARIETIES
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
FREE ALGEBRAS OVER A POSET IN VARIETIES
Figallo, Aldo Jr; Ziliani, Alicia;
  PDF(new window)
 Abstract
In 1945, the notion of free lattice over a poset was introduced by R. Dilworth (Trans. Am. Math. Soc. 57 (1945), 123{154). In this note, a construction of the free algebra over a poset in varieties finitely generated is shown. Finally, this result is applied to different classes of algebras.
 Keywords
free algebras;free algebras over a poset;varieties finitely generated;
 Language
English
 Cited by
1.
Notes on the Variety of Ternary Algebras, Advances in Pure Mathematics, 2014, 04, 09, 506  crossref(new windwow)
2.
Free Algebras Over a Poset in Varieties of Łukasiewicz–Moisil Algebras, Demonstratio Mathematica, 2015, 48, 3  crossref(new windwow)
 References
1.
J. Berman and W. J. Blok, Free Lukasiewicz and hoop residuation algebras, Studia Logica 77 (2004), no. 2, 153-180. crossref(new window)

2.
S. Burris and H. P. Sankappanavar, A Course in Universal Algebra, Graduate Texts in Mathematics, 78. Springer-Verlag, New York-Berlin, 1981.

3.
M. Canals Frau and A. V. Figallo, (n+1)-valued modal implicative semilattices, Proceed- ings of the 22nd International Symposium on Multipe Valued Logic. IEEE Computer Society (1992), 198-205.

4.
A. Diego, On implicative algebras, Rev. Un. Mat. Argentina 20 (1962), 310-311.

5.
A. Diego, Sobre las algebras de Hilbert, Notas de Logica Matematica 12, Univ. Nac. del Sur, Bahia Blanca, 1965.

6.
A. Diego, Sur les algebres de Hilbert, Collection de Logique Mathematique, Ser. A, Fasc. XXI Gauthier-Villars, Paris; E. Nauwelaerts, Louvain, 1966.

7.
R. P. Dilworth, Lattices with unique complements, Trans. Amer. Math. Soc. 57 (1945), 123-154. crossref(new window)

8.
A. Figallo, Jr., Free algebras over a poset in varieties generated by a finite number of algebras, CLE e-Prints of the Centre for Logic Vol. 9(3), 2009.

9.
A. Figallo, Jr., Sobre la estructura ordenada de las algebras de Hilbert, M.Sc. Thesis, Depar- tamento de Matematica, Univerisdad Nacional del Sur, Argentina, 2006.