JOURNAL BROWSE
Search
Advanced SearchSearch Tips
ON THE CONVERGENCE OF A NEWTON-LIKE METHOD UNDER WEAK CONDITIONS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
ON THE CONVERGENCE OF A NEWTON-LIKE METHOD UNDER WEAK CONDITIONS
Argyros, Ioannis K.; Ren, Hongmin;
  PDF(new window)
 Abstract
We provide a semilocal convergence analysis for a Newtonlike method under weak conditions in a Banach space setting. In particular, we only assume that the Gateaux derivative of the operator involved is hemicontinuous. An application is also provided.
 Keywords
Newton-like method;Banach space setting;semilocal convergence;Gateaux-derivative;hemicontinuity;
 Language
English
 Cited by
 References
1.
I. K. Argyros, Convergence theorems for Newton-like methods without Lipschitz condi- tions, Comm. Appl. Nonlinear Anal. 9 (2002), no. 3, 103-111.

2.
I. K. Argyros, On a theorem of L. V. Kantorovich concerning Newton's method, J. Comput. Appl. Math. 155 (2003), no. 2, 223-230. crossref(new window)

3.
I. K. Argyros, Unifying local-semilocal convergence analysis and applications for two-point Newton-like methods in Banach space, J. Math. Anal. Appl. 298 (2004), no. 2, 374-397. crossref(new window)

4.
I. K. Argyros, Computational theory of iterative methods, Studies in Computational Mathematics, 15. Elsevier B. V., Amsterdam, 2007.

5.
E. Catinas, On some iterative methods for solving nonlinear equations, Rev. Anal. Numer. Theor. Approx. 23 (1994), no. 1, 47-53.

6.
X. Chen and T. Yamamoto, Convergence domains of certain iterative methods for solv- ing nonlinear equations, Numer. Funct. Anal. Optim. 10 (1989), no. 1-2, 37-48. crossref(new window)

7.
W. B. Johnson and J. Lindenstrauss, Handbook of the Geometry of Banach Spaces, Vol. 2, Elsevier, Science B.V., Amsterdam, 2003.

8.
L. V. Kantorovich and G. P. Akilov, Functional Analysis in Normed Spaces, Pergamon Press, Oxford, 1982.

9.
P. D. Proinov, New general convergence theory for iterative processes and its applications to Newton-Kantorovich type theorems, J. Complexity 26 (2010), no. 1, 3-42. crossref(new window)

10.
M. M. Vainberg, Variational Methods for the Study of Nonlinear Operators, Holden Day Inc., London, 1964.

11.
P. P. Zabrejko and D. F. Nguen, The majorant method in the theory of Newton- Kantorovich approximations and the Ptak error estimates, Numer. Funct. Anal. Optim. 9 (1987), no. 5-6, 671-684. crossref(new window)

12.
A. I. Zincenko, Some approximate methods of solving equations with non-differentiable operators, Dopovidi Akad. Nauk Ukrain. RSR 1963 (1963), 156-161.