JOURNAL BROWSE
Search
Advanced SearchSearch Tips
GENERAL FRAMEWORK FOR PROXIMAL POINT ALGORITHMS ON (A, η)-MAXIMAL MONOTONICIT FOR NONLINEAR VARIATIONAL INCLUSIONS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
GENERAL FRAMEWORK FOR PROXIMAL POINT ALGORITHMS ON (A, η)-MAXIMAL MONOTONICIT FOR NONLINEAR VARIATIONAL INCLUSIONS
Verma, Ram U.;
  PDF(new window)
 Abstract
General framework for proximal point algorithms based on the notion of (A, )-maximal monotonicity (also referred to as (A, )-monotonicity in literature) is developed. Linear convergence analysis for this class of algorithms to the context of solving a general class of nonlinear variational inclusion problems is successfully achieved along with some results on the generalized resolvent corresponding to (A, )-monotonicity. The obtained results generalize and unify a wide range of investigations readily available in literature.
 Keywords
variational inclusions;maximal monotone mapping;(A, ) maximal monotone mapping;generalized resolvent operator;
 Language
English
 Cited by
1.
General Class of Implicit Variational Inclusions and Graph Convergence on A-Maximal Relaxed Monotonicity, Journal of Optimization Theory and Applications, 2012, 155, 1, 196  crossref(new windwow)
 References
1.
R. P. Agarwal and R. U. Verma, Inexact A-proximal point algorithm and applications to nonlinear variational inclusion problems, J. Optim. Theory Appl. 144 (2010), no. 3, 431-444. crossref(new window)

2.
J. Eckstein and D. P. Bertsekas, On the Douglas-Rachford splitting method and the proximal point algorithm for maximal monotone operators, Math. Programming 55 (1992), no. 3, Ser. A, 293-318. crossref(new window)

3.
Y. P. Fang and N. J. Huang, H-monotone operators and system of variational inclusions, Comm. Appl. Nonlinear Anal. 11 (2004), no. 1, 93-101.

4.
H. Y. Lan, J. H. Kim, and Y. J. Cho, On a new class of nonlinear A-monotone multi-valued variational inclusions, Journal of Mathematical Analysis and Applications 327 (2007), no. 1, 481-493. crossref(new window)

5.
T. Pennanen, Local convergence of the proximal point algorithm and multiplier methods without monotonicity, Math. Oper. Res. 27 (2002), no. 1, 170-191. crossref(new window)

6.
S. M. Robinson, Composition duality and maximal monotonicity, Math. Program. 85 (1999), no. 1, Ser. A, 1-13. crossref(new window)

7.
R. T. Rockafellar, Monotone operators and the proximal point algorithm, SIAM J. Con- trol Optimization 14 (1976), no. 5, 877-898. crossref(new window)

8.
R. T. Rockafellar, Augmented Lagrangians and applications of the proximal point algorithm in convex programming, Math. Oper. Res. 1 (1976), no. 2, 97-116. crossref(new window)

9.
P. Tseng, A modi ed forward-backward splitting method for maximal monotone mappings, SIAM J. Control Optim. 38 (2000), no. 2, 431-446. crossref(new window)

10.
R. U. Verma, A-monotonicity and its role in nonlinear variational inclusions, J. Optim. Theory Appl. 129 (2006), no. 3, 457-467. crossref(new window)

11.
R. U. Verma, Approximation solvability of a class of nonlinear set-valued variational inclusions involving (A,)-monotone mappings, J. Math. Anal. Appl. 337 (2008), no. 2, 969-975. crossref(new window)

12.
R. U. Verma, A-monotone nonlinear relaxed cocoercive variational inclusions, Cent. Eur. J. Math. 5 (2007), no. 2, 386-396. crossref(new window)

13.
R. U. Verma, Relatively inexact proximal point algorithm and linear convergence analysis, Int. J. Math. Math. Sci. 2009 (2009), Art. ID 691952, 11 pp.

14.
E. Zeidler, Nonlinear Functional Analysis and its Applications. I, Springer-Verlag, New York, 1986.

15.
E. Zeidler, Nonlinear Functional Analysis and its Applications. II/A, Springer-Verlag, New York, 1980.

16.
E. Zeidler, Nonlinear Functional Analysis and its Applications. II/B, Springer-Verlag, New York, 1990.

17.
E. Zeidler, Nonlinear Functional Analysis and its Applications. III, Springer-Verlag, New York, 1985.