JOURNAL BROWSE
Search
Advanced SearchSearch Tips
A GENERAL MULTIPLE-TIME-SCALE METHOD FOR SOLVING AN n-TH ORDER WEAKLY NONLINEAR DIFFERENTIAL EQUATION WITH DAMPING
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
A GENERAL MULTIPLE-TIME-SCALE METHOD FOR SOLVING AN n-TH ORDER WEAKLY NONLINEAR DIFFERENTIAL EQUATION WITH DAMPING
Azad, M. Abul Kalam; Alam, M. Shamsul; Rahman, M. Saifur; Sarker, Bimolendu Shekhar;
  PDF(new window)
 Abstract
Based on the multiple-time-scale (MTS) method, a general formula has been presented for solving an n-th, n
 Keywords
oscillation;non-oscillation;asymptotic method;
 Language
English
 Cited by
 References
1.
G. N. Bojadziev, Damped forced nonlinear vibrations of systems with delay, J. Sound Vibration 46 (1976), 113-120. crossref(new window)

2.
G. N. Bojadziev, Two variables expansion method applied to the study of damped non-linear oscillations, Nonlinear Vibration Problems 21 (1981), 11-18.

3.
G. N. Bojadziev, Damped nonlinear oscillations modeled by a 3-dimensional differential system, Acta Mech. 48 (1983), no. 3-4, 193-201. crossref(new window)

4.
N. N. Bogoliubov and Yu. A. Mitropolskii, Asymptotic Methods in the Theory of Non- linear Oscillations, Gordan and Breach, New York, 1961.

5.
A. Hassan, The KBM derivative expansion method is equivalent to the multiple-time- scales method, J. Sound Vibration 200 (1997), no. 4, 433-440. crossref(new window)

6.
B. Z. Kaplan, Use of complex variables for the solution of certain nonlinear systems, J. Computer Methods in Applied Mechanics and Engineering 13 (1978), 281-291. crossref(new window)

7.
N. N. Krylov and N. N. Bogoliubov, Introduction to Nonlinear Mechanics, Princeton University Press, New Jersey, 1947.

8.
I. S. N. Murty, A unified Krylov-Bogoliubov method for solving second order nonlinear systems, Int. J. Nonlinear Mech. 6 (1971), 45-53. crossref(new window)

9.
I. S. N. Murty, B. L. Deekshatulu, and G. Krisna, On asymptotic method of Krylov- Bogoliubov for overdamped nonlinear systems, J. Frank Inst. 288 (1969), 49-64. crossref(new window)

10.
A. H. Nayfeh, Perturbation Methods, John Wiley & Sons, New York-London-Sydney, 1973.

11.
A. H. Nayfeh, Introduction to Perturbation Techniques, Wiley-Interscience [John Wiley & Sons], New York, 1981.

12.
I. P. Popov, A generalization of the asymptotic method of N. N. Bogolyubov in the theory of non-linear oscillations, Dokl. Akad. Nauk SSSR (N.S.) 111 (1956), 308-311.

13.
R. A. Rink, A procedure to obtain the initial amplitude and phase for the Krylov- Bogoliubov method, J. Franklin Inst. 303 (1977), 59-65. crossref(new window)

14.
M. Shamsul Alam, A unified Krylov-Bogoliubov-Mitropolskii method for solving n-order nonlinear systems, J. Franklin Inst. 339 (2002), 239-248. crossref(new window)

15.
M. Shamsul Alam, A unified Krylov-Bogoliubov-Mitropolskii method for solving n-th order nonlin- ear systems with varying coefficients, J. Sound and Vibration 265 (2003), 987-1002. crossref(new window)

16.
M. Shamsul Alam, A modified and compact form of Krylov-Bogoliubov-Mitropolskii unified KBM method for solving an n-th order nonlinear differential equation, Int. J. Nonlinear Mech. 39 (2004), 1343-1357. crossref(new window)

17.
M. Shamsul Alam, M. Abul Kalam Azad, and M. A. Hoque. A general Struble's technique for solving an n-th order weakly nonlinear differential system with damping, Int. J. Nonlinear Mech. 41 (2006), 905-918. crossref(new window)