JOURNAL BROWSE
Search
Advanced SearchSearch Tips
NUMERICAL SOLUTION OF STOCHASTIC DIFFERENTIAL EQUATION CORRESPONDING TO CONTINUOUS DISTRIBUTIONS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
NUMERICAL SOLUTION OF STOCHASTIC DIFFERENTIAL EQUATION CORRESPONDING TO CONTINUOUS DISTRIBUTIONS
Amini, Mohammad; Soheili, Ali Reza; Allahdadi, Mahdi;
  PDF(new window)
 Abstract
We obtain special type of differential equations which their solution are random variable with known continuous density function. Stochastic differential equations (SDE) of continuous distributions are determined by the Fokker-Planck theorem. We approximate solution of differential equation with numerical methods such as: the Euler-Maruyama and ten stages explicit Runge-Kutta method, and analysis error prediction statistically. Numerical results, show the performance of the Rung-Kutta method with respect to the Euler-Maruyama. The exponential two parameters, exponential, normal, uniform, beta, gamma and Parreto distributions are considered in this paper.
 Keywords
stochastic differential equation;continuous distribution function;confidence interval;Euler-Maruyama method;
 Language
English
 Cited by
 References
1.
L. Ambrosio, G. Savare, and L. Zambotti, Existence and stability for Fokker-Planck equations with log-concave reference measure, Probab. Theory Related Fields 145 (2009), no. 3-4, 517-564. crossref(new window)

2.
E. Barkai, Fractional Fokker-Planck equation, solution, and application, Phys. Rev. E 63 (2001), 046118. crossref(new window)

3.
E. Buckwar, Introduction to the numerical analysis of stochastic delay differential equations, J. Comput. Appl. Math. 125 (2000), no. 1-2, 297-307. crossref(new window)

4.
K. Burrage, P. M. Burrage, and T. Tian, Numerical methods for strong solutions of stochastic differential equations: an overview, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 460 (2004), no. 2041, 373-402. crossref(new window)

5.
K. Burrage and P. M. Burrage, Numerical methods for stochastic differential equations with applications, advanced computational modeling center, Unversity of Queensland, Australia, 2002.

6.
M. Careltti, Numerical solution of stochastic differential problems in the biosciences, J. Comput. Appl. Math. 185 (2006), no. 2, 422-440. crossref(new window)

7.
J. B. Chen and J. Li, A note on the principle of preservation of probability and probability density evolution equation, Probab. Eng. Mech. Vol. 24 (2009), 51-59. crossref(new window)

8.
S.-N. Chow and H.-M. Zhou, An analysis of phase noise and Fokker-Planck equations, J. Differential Equations 234 (2007), no. 2, 391-411. crossref(new window)

9.
O. Ditlevsen, Invalidity of the spectral Fokker-Planck equation for Cauchy noise driven Langevin equation, Probab. Eng. Mech. 19 (2004), no. 4, 385-392. crossref(new window)

10.
T. D. Frank and A. Daffertshofer, Nonlinear Fokker-Planck equations whose stationary solutions make entropy-like functionals stationary, Phys. A 272 (1999), no. 3-4, 497-508. crossref(new window)

11.
T. D. Frank, A note on the Markov property of stochastic processes described by nonlinear Fokker-Planck equations, Phys. A 320 (2003), no. 1-4, 204-210. crossref(new window)

12.
D. Kim and D. Stanescu, Low-storage Runge-Kutta methods for stochastic differential equations, Appl. Numer. Math. 58 (2008), no. 10, 1479-1502. crossref(new window)

13.
P. E. Kloeden and E. Platen, Numerical Solution of Stochastic Differential Equations, Springer-Verlage, Berlin, 1992.

14.
Y. Komori, T. Mistsui, and H. Sugiura, Rooted tree analysis of the order continuous of row-type scheme for stochastic differential equation, BIT, 37 (1997), no. 1, 43-66. crossref(new window)

15.
H. P. Langtangen, A general numerical solution method for Fokker-Planck equations with applications to structural relibaility, Probab. Eng. Mech. 6 (1991), no. 1, 33-48. crossref(new window)

16.
X. Mao and S. Sabanis, Numerical solutions of stochastic differential delay equations under local Lipschitz condition, J. Comput. Appl. Math. 151 (2003), no. 1, 215-227. crossref(new window)

17.
X. Mao, C. Yuan, and G. Yin, Numerical method for stationary distribution of stochastic differential equations with Markovian switching, J. Comput. Appl. Math. 174 (2005), no. 1, 1-27. crossref(new window)

18.
H. C. Ottinger, Stochastic Processes in Polymeric Fluids, Springer Verlag, Berlin, 1999.

19.
M. Di Paola and A. Sofi, Approximate solution of the Fokker-Planck-Kolmogorov equation, Probab. Eng. Mech. 17 (2002), 369-384. crossref(new window)

20.
S. Primak, V. Kontorovich, and V. Lyandres, Stochastic Methods and Their Applications to Communications, John Wiley & Sons Ltd, 2004.

21.
H. Risken, The Fokker-Planck Equation, Second Edition. Springer, 1996.

22.
Jr. M. S. Torres and J. M. A. Figueiredo, Probability amplitude structure of Fokker-Plank equation, Phys. A 329 (2003), no. 1-2, 68-80. crossref(new window)

23.
A. Tocino and R. Ardanuy, Runge-Kutta methods for numerical solution of stochastic differential equations, J. Comput. Appl. Math. 138 (2002), no. 2, 219-241. crossref(new window)