JOURNAL BROWSE
Search
Advanced SearchSearch Tips
REMARKS ON CS-STARCOMPACT SPACES
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
REMARKS ON CS-STARCOMPACT SPACES
Song, Yan-Kui;
  PDF(new window)
 Abstract
A space X is cs-starcompact if for every open cover of X, there exists a convergent sequence S of X such that St(S, ) = X, where . In this paper, we prove the following statements: (1) There exists a Tychonoff cs-starcompact space having a regular-closed subset which is not cs-starcompact; (2) There exists a Hausdorff cs-starcompact space with arbitrary large extent; (3) Every Hausdorff centered-Lindelf space can be embedded in a Hausdorff cs-starcompact space as a closed subspace.
 Keywords
compact;countably compact;cs-starcompact;
 Language
English
 Cited by
 References
1.
M. Bonanzinga and M. V. Matveev, Closed subspaces of star-Lindelof and related spaces, East-West J. Math. 2 (2000), no. 2, 171-179.

2.
M. Bonanzinga and M. V. Matveev, Products of star-Lindelof and related spaces, Houston J. Math. 27 (2001), no. 1, 45-57.

3.
E. K. van Douwn, G. M. Reed, A. W. Roscoe, and I. J. Tree, Star covering properties, Topology Appl. 39 (1991), no. 1, 71-103. crossref(new window)

4.
R. Engelking, General Topology, Revised and completed edition, Heldermann Verlag, Berlin, 1989.

5.
W. M. Fleischman, A new extension of countable compactness, Fund. Math. 67 (1970), 1-7.

6.
M. V. Matveev, A survey on star-covering properties, Topological Atlas, No. 330, 1998.

7.
M. V. Matveev, How weak is weak extent?, Topology Appl. 119 (2002), no. 2, 229-232. crossref(new window)

8.
J. van Mill, V. V. Tkachuk, and R. G Wilson, Classes defined by stars and neighbourhood assignments, Topology Appl. 154 (2007), no. 10, 2127-2134. crossref(new window)

9.
Y.-K. Song, On K-starcompact spaces, Bull. Malays. Math. Sci. Soc. (2) 30 (2007), no. 1, 59-64.

10.
Y.-K. Song, On countable K-covering properties, Appl. Gen. Topol. 8 (2007), no. 2, 249-258. crossref(new window)