JOURNAL BROWSE
Search
Advanced SearchSearch Tips
COMPARISON RESULTS FOR THE PRECONDITIONED GAUSS-SEIDEL METHODS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
COMPARISON RESULTS FOR THE PRECONDITIONED GAUSS-SEIDEL METHODS
Yun, Jae-Heon;
  PDF(new window)
 Abstract
In this paper, we provide comparison results of several types of the preconditioned Gauss-Seidel methods for solving a linear system whose coefficient matrix is a Z-matrix. Lastly, numerical results are presented to illustrate the theoretical results.
 Keywords
Z-matrix;preconditioned Gauss-Seidel method;spectral radius;
 Language
English
 Cited by
1.
ON A FAST ITERATIVE METHOD FOR APPROXIMATE INVERSE OF MATRICES,;

대한수학회논문집, 2013. vol.28. 2, pp.407-418 crossref(new window)
1.
ON A FAST ITERATIVE METHOD FOR APPROXIMATE INVERSE OF MATRICES, Communications of the Korean Mathematical Society, 2013, 28, 2, 407  crossref(new windwow)
2.
Comparison theorems of preconditioned Gauss–Seidel methods for M-matrices, Applied Mathematics and Computation, 2012, 219, 4, 1947  crossref(new windwow)
 References
1.
A. Berman and R. J. Plemmoms, Nonnegative Matrices in The Mathematical Sciences, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1994.

2.
D. J. Evans, M. M. Martins, and M. E. Trigo, The AOR iterative method for new preconditioned linear systems, J. Comput. Appl. Math. 132 (2001), no. 2, 461-466. crossref(new window)

3.
A. Gunawardena, S. Jain, and L. Snyder, Modified iterative methods for consistent linear systems, Linear Algebra Appl. 154/156 (1991), 123-143. crossref(new window)

4.
T. Kohno, H. Kotakemori, H. Niki, and M. Usui, Improving the modified Gauss-Seidel method for Z-matrices, Linear Algebra Appl. 267 (1997), 113-123. crossref(new window)

5.
W. Li, Comparison results for solving preconditioned linear systems, J. Comput. Appl. Math. 176 (2005), no. 2, 319-329. crossref(new window)

6.
W. Li, A note on the preconditioned Gauss-Seidel (GS) method for linear systems, J. Comput. Appl. Math. 182 (2005), no. 1, 81-90. crossref(new window)

7.
M. Neumann and R. J. Plemmons, Convergence of parallel multisplitting iterative methods for M-matrices, Linear Algebra Appl. 88/89 (1987), 559-573. crossref(new window)

8.
H. Niki, K. Harada, M. Morimoto, and M. Sakakihara, The survey of preconditioners used for accelerating the rate of convergence in the Gauss-Seidel method, J. Comput. Appl. Math. 164/165 (2004), 587-600. crossref(new window)

9.
L. Sun, A comparison theorem for the SOR iterative method, J. Comput. Appl. Math. 181 (2005), no. 2, 336-341. crossref(new window)

10.
R. S. Varga, Matrix Iterative Analysis, Springer, Berlin, 2000.

11.
J. H. Yun, A note on the improving modified Gauss-Seidel (IMGS) method, Appl. Math. Comput. 184 (2007), no. 2, 674-679. crossref(new window)

12.
J. H. Yun, A note on preconditioned AOR method for L-matrices, J. Comput. Appl. Math. 220 (2008), no. 1-2, 13-16. crossref(new window)