JOURNAL BROWSE
Search
Advanced SearchSearch Tips
ON COMMUTING GRAPHS OF GROUP RING ZnQ8
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
ON COMMUTING GRAPHS OF GROUP RING ZnQ8
Chen, Jianlong; Gao, Yanyan; Tang, Gaohua;
  PDF(new window)
 Abstract
The commuting graph of an arbitrary ring R, denoted by , is a graph whose vertices are all non-central elements of R, and two distinct vertices a and b are adjacent if and only if ab
 Keywords
group ring;commuting graph;connected component;diameter of a graph;
 Language
English
 Cited by
 References
1.
A. Abdollahi, Commuting graphs of full matrix rings over finite fields, Linear Algebra Appl. 428 (2008), no. 11-12, 2947-2954. crossref(new window)

2.
S. Akbari, M. Ghandehari, M. Hadian, and A. Mohammadian, On commuting graphs of semisimple rings, Linear Algebra Appl. 390 (2004), 345-355. crossref(new window)

3.
S. Akbari, A. Mohammadian, H. Radjavi, and P. Raja, On the diameters of commuting graphs, Linear Algebra Appl. 418 (2006), no. 1, 161-176. crossref(new window)

4.
S. Akbari and P. Raja, Commuting graphs of some subsets in simple rings, Linear Algebra Appl. 416 (2006), no. 2-3, 1038-1047. crossref(new window)

5.
G. Karpilovsky, Unit Group of Classical Rings, Clarendon Press, Oxford, 1988.

6.
T. Y. Lam, A First Course in Noncommutative Rings, Springer Verlag, New York, 1991.

7.
C. P. Milies and S. K. Sehgal, An Introduction to Group Rings, Kluwer Academic Publishers, 2002.

8.
C. D. Pan and C. B. Pan, Elementary Number Theory, Second edition, Beijing University Publishing Company, Beijing, 2005.

9.
D. S. Passman, The Algebraic Structure of Group Rings, Wiley - Interscience, John Wiley Sons, New York, 1977.

10.
G. H. Tang and H. D. Su, The properties of zero-divisors graph of $Z_n$[i], J. Guangxi Norm. Univ. Natur. Sci. Ed. 3 (2007), 32-35.

11.
Y. J. Wei, G. H. Tang, and H. D. Su, The commuting graph of the quaternion algebra over residue classes of integers, Ars Combin. 95 (2010), 113-127.