JOURNAL BROWSE
Search
Advanced SearchSearch Tips
ON LEFT α-MULTIPLIERS AND COMMUTATIVITY OF SEMIPRIME RINGS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
ON LEFT α-MULTIPLIERS AND COMMUTATIVITY OF SEMIPRIME RINGS
Ali, Shakir; Huang, Shuliang;
  PDF(new window)
 Abstract
Let R be a ring, and be an endomorphism of R. An additive mapping H : R R is called a left -multiplier (centralizer) if H(xy)
 Keywords
ideal;(semi)prime ring;generalized derivation;left multiplier (centralizer);left -multiplier;Jordan left -multiplier;
 Language
English
 Cited by
1.
Generalized Derivations on Power Values of Lie Ideals in Prime and Semiprime Rings, International Journal of Mathematics and Mathematical Sciences, 2014, 2014, 1  crossref(new windwow)
 References
1.
E. Albash, On $\tau$-centralizers of semiprime rings, Siberian Math. J. 48 (2007), no. 2, 191-196. crossref(new window)

2.
S. Ali and C. Haetinger, Jordan $\alpha$-centralizers in rings and some applications, Bol. Soc. Paran. Math. (3) 26 (2008), no. 1-2, 71-80.

3.
F. W. Anderson, Lectures on noncommutative rings, Univ. of Oregon, 2002.

4.
M. Ashraf and S. Ali, On left multipliers and the commutativity of prime rings, Demonstratio Math. 41 (2008), no. 4, 763-771.

5.
M. Ashraf, S. Ali, and C. Haetinger, On derivations in rings and their applications, Aligarh Bull. Math. 25 (2006), no. 2, 79-107.

6.
M. Bresar, On the distance of the composition of two derivations to the generalized derivations, Glasgow Math. J. 33 (1991), no. 1, 89-93. crossref(new window)

7.
W. Cortes and C. Haetinger, On Lie ideals and left Jordan $\alpha$-centralizers of 2-torsion-free rings, Math. J. Okayama Univ. 51 (2009), 111-119.

8.
M. N. Daif and M. S. Tammam EL-Sayiad, On $\alpha$-centralizers of semiprime rings (II), St. Petersburg Math. J. 21 (2010), no. 1, 43-52. crossref(new window)

9.
I. N. Herstein, Rings with Involution, University of Chicago Press, Chicago 1976.

10.
M. A. Quadri, M. S. Khan, and N. Rehman, Generalized derivations and commutativity of prime rings, Indian J. Pure Appl. Math. 34 (2003), no. 9, 1393-1396.

11.
J. Vukman and I. Kosi-Ulbl, On centralizers of semiprime rings, Aequationes Math. 66 (2003), no. 3, 277-283. crossref(new window)

12.
J. Vukman and I. Kosi-Ulbl, On centralizers of semiprime rings with involution, Studia Sci. Math. Hungar. 43 (2006), no. 1, 61-67.

13.
B. Zalar, On centralizers of semiprime rings, Comment. Math. Univ. Carolin. 32(1991), no. 4, 609-614.