JOURNAL BROWSE
Search
Advanced SearchSearch Tips
ON MINIMALITY IN PSEUDO-BCI-ALGEBRAS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
ON MINIMALITY IN PSEUDO-BCI-ALGEBRAS
Kim, Young-Hee; So, Keum-Sook;
  PDF(new window)
 Abstract
In this paper we consider pseudo-BCK/BCI-algebras. In particular, we consider properties of minimal elements ( implies x = a) in terms of the binary relation which is reflexive and anti-symmetric along with several more complicated conditions. Some of the properties of minimal elements obtained bear resemblance to properties of B-algebras in case the algebraic operations and are identical, including the property = a. The condition all defines the class of p-semisimple pseudo-BCK/BCI-algebras( implies x = 0) as an interesting subclass whose further properties are also investigated below.
 Keywords
(pseudo-)BCK/BCI-algebra;minimal;p-semisimple;
 Language
English
 Cited by
 References
1.
S. S. Ahn, Y. B. Jun, H. S. Kim, and M. Kondo, Fuzzifications of pseudo-BCI-algebras, Sci. Math. Jpn. 60 (2004), no. 1, 15-19.

2.
G. Dymek, p-semisimple pseudo-BCI-algebras, submitted.

3.
G. Georgescu and A. Iorgulescu, Pseudo BCK-algebras: an extension of BCK-algebras, Combinatorics, computability and logic (Constanta, 2001), 97-114, Springer Ser. Discrete Math. Theor. Comput. Sci., Springer, London, 2001.

4.
A. Gilani and B. N. Waphare, On pseudo a-ideal of pseudo-BCI-algebras, Sci. Magna 3 (2007), no. 2, 50-59.

5.
A. Iorgulescu, Algebras of Logic as BCK-Algebras, Editura ASE, Bucharest, 2008.

6.
K. Iseki, On BCI-algebras, Math. Sem. Notes Kobe Univ. 8 (1980), no. 1, 125-130.

7.
K. Iseki and S. Tanaka, An introduction to the theory of BCK-algebras, Math. Japon. 23 (1978/79), no. 1, 1-26.

8.
Y. B. Jun, Characterizations of pseudo BCK-algebras, Math. Japonicae Online 7 (2002), 225-230.

9.
Y. B. Jun, H. S. Kim, and J. Neggers, On pseudo-BCI ideals of pseudo BCI-algebras, Mate. Vesnik 58 (2006), no. 1-2, 39-46.

10.
J. Meng and Y. B. Jun, BCK-algebras, Kyungmoon Sa, Seoul, 1994.

11.
H. Yisheng, BCI-algebras, Science Press, Beijing, 2006.