JOURNAL BROWSE
Search
Advanced SearchSearch Tips
WEYL`S TYPE THEOREMS FOR ALGEBRAICALLY (p, k)-QUASIHYPONORMAL OPERATORS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
WEYL`S TYPE THEOREMS FOR ALGEBRAICALLY (p, k)-QUASIHYPONORMAL OPERATORS
Rashid, Mohammad Hussein Mohammad; Noorani, Mohd Salmi Mohd;
  PDF(new window)
 Abstract
For a bounded linear operator T we prove the following assertions: (a) If T is algebraically (p, k)-quasihyponormal, then T is a-isoloid, polaroid, reguloid and a-polaroid. (b) If is algebraically (p, k)-quasihyponormal, then a-Weyl`s theorem holds for f(T) for every , where is the space of all functions that analytic in an open neighborhoods of of T. (c) If is algebraically (p, k)-quasihyponormal, then generalized a-Weyl`s theorem holds for f(T) for every . (d) If T is a (p, k)-quasihyponormal operator, then the spectral mapping theorem holds for semi-B-essential approximate point spectrum , and for left Drazin spectrum for every .
 Keywords
(p, k)-quasihyponormal;single valued extension property;Fred-holm theory;Browder`s theory;spectrum;
 Language
English
 Cited by
1.
Properties (t) and (gt) for Bounded Linear Operators, Mediterranean Journal of Mathematics, 2014, 11, 2, 729  crossref(new windwow)
 References
1.
P. Aiena, Fredholm and Local Spectral Theory with Applications to Multipliers, Kluwer, 2004.

2.
P. Aiena and O. Monsalve, The single valued extension property and the generalized Kato decomposition property, Acta Sci. Math. (Szeged) 67 (2001), no. 3-4, 791-807.

3.
M. Amouch and H. Zguitti, On the equivalence of Browder's and generalized Browder's theorem, Glasg. Math. J. 48 (2006), no. 1, 179-185. crossref(new window)

4.
S. K. Berberian, An extension of Weyl's theorem to a class of not necessarily normal operators, Michigan Math. J. 16 (1969), 273-279. crossref(new window)

5.
S. K. Berberian, The Weyl spectrum of an operator, Indiana Univ. Math. J. 20 (1970), 529-544. crossref(new window)

6.
M. Berkani, On a class of Quasi-Fredholm operators, Integral Equations Operator Theory 34 (1999), no. 2, 244-249. crossref(new window)

7.
M. Berkani, Index of B-Fredholm operators and generalization of a Weyl theorem, Proc. Amer. Math. Soc. 130 (2002), no. 6, 1717-1723. crossref(new window)

8.
M. Berkani, B-Weyl spectrum and poles of the resolvent, J. Math. Anal. Appl. 272 (2002), no. 2, 596-603. crossref(new window)

9.
M. Berkani, On the equivalence of Weyl theorem and generalized Weyl theorem, Acta Math. Sin. (Engl. Ser.) 23 (2007), no. 1, 103-110. crossref(new window)

10.
M. Berkani and A. Arroud, Generalized weyl's theorem and hyponormal operators, J. Aust. Math. Soc. 76 (2004), no. 2, 1-12. crossref(new window)

11.
M. Berkani and J. Koliha, Weyl type theorems for bounded linear operators, Acta Sci. Math. (Szeged) 69 (2003), no. 1-2, 359-376.

12.
M. Berkani and M. Sarih, An Atkinson-type theorem for B-Fredholm operators, Studia Math. 148 (2001), no. 3, 251-257. crossref(new window)

13.
L. A. Coburn, Weyl's theorem for nonnormal operators, Michigan Math. J. 13 (1966), 285-288. crossref(new window)

14.
R. E. Curto and Y. M. Han, Weyl's theorem for algebraically paranormal operators, Integral Equations Operator Theory 47 (2003), no. 3, 307-314. crossref(new window)

15.
H. R. Dowson, Spectral Theory of Linear Operators, Academic Press, London, 1978.

16.
B. P. Duggal and S. V. Djordjevic, Generalized Weyl's theorem for a class of operators satisfying a norm condition, Proc. Roy. Irish Acad. Sect. A 104A (2004), no. 1, 271-277.

17.
B. P. Duggal and S. V. Djordjevic, Generalised Weyl's theorem for a class of operators satisfying a norm condition, Math. Proc. R. Ir. Acad. 104A (2004), no. 1, 75-81.

18.
J. K. Finch, The single valued extension property on a Banach space, Pacific J. Math. 58 (1975), no. 1, 61-69. crossref(new window)

19.
R. E. Harte, Invertibility and Singularity for Bounded Linear Operators, Marcel Dekker, New York, 1988.

20.
S. H. Lee and W. Y. Lee, On Weyl's theorem II, Math. Japon. 43 (1996), no. 3, 549-553.

21.
A.-H. Kim and S. U. Yoo, Weyl's theorem for isoloid and reguloid operators, Commun. Korean Math. Soc. 14 (1999), no. 1, 179-188.

22.
I. H. Kim, On (p, k)-quasihyponormal operators, Math. Inequal. Appl. 7 (2004), no. 4, 629-638.

23.
J. J. Koliha, Isolated spectral points, Proc. Amer. Math. Soc. 124 (1996), no. 11, 3417-3424. crossref(new window)

24.
M. Lahrouz and M. Zohry, Weyl type theorems and the approximate point spectrum, Irish Math. Soc. Bull. 55 (2005), 41-51.

25.
K. B. Laursen, Operators with finite ascent, Pacific J. Math. 152 (1992), no. 2, 323-336. crossref(new window)

26.
S. Mecheri, Weyl's theorem for algebraically (p, k)-quasihyponormal operators, Georgian Math. J. 13 (2006), no. 2, 307-313.

27.
V. Rakocevic, Operators obeying a-Weyl's theorem, Rev. Roumaine Math. Pures Appl. 34 (1989), no. 10, 915-919.

28.
V. Rakocevic, Semi-Fredholm operators with finite ascent or descent and perturbation, Proc. Amer. Math. Soc. 122 (1995), no. 12, 3823-3825.

29.
V. Rakocevic, Semi-Browder operators and perturbations, Studia Math. 122 (1997), no. 2, 131-137.

30.
V. Rakocevic, Operators Obeying a-Weyl's theorem, Publ. Math. Debrecen 55 (1999), no. 3-4, 283-298.

31.
M. H. M. Rashid, M. S. M. Noorani, and A. S. Saari, Weyl's type theorems for quasi-Class A operators, J. Math. Stat. 4 (2008), no. 2, 70-74. crossref(new window)

32.
M. H. M. Rashid, M. S. M. Noorani, and A. S. Saari, Generalized Weyl's theorem for log-hyponormal, Malaysian J. Math. Soc. 2 (2008), no. 1, 73-82.

33.
C. Schmoeger, On operators T such that Weyl's theorem holds for f(T), Extracta Math. 13 (1998), no. 1, 27-33.

34.
K. Tanahashi, A. Uchiyama, and M. Cho, Isolated point of spectrum of (p, k)-quasihyponormal operators, Linear Algebra Appl. 382 (2004), no. 1, 221-229. crossref(new window)

35.
A. E. Taylor, Theorems on ascent, descent, nullity and defect of linear operators, Math. Ann. 163 (1966), 18-49. crossref(new window)

36.
H. Weyl, Uber beschrankte quadratische Formen, deren Differenze vollsteting ist, Rend. Circ. Math. Palermo 27 (1909), 373-392. crossref(new window)

37.
H. Zguitti, A note on generalized Weyl's theorem, J. Math. Anal. Appl. 316 (2006), no. 1, 373-381. crossref(new window)