JOURNAL BROWSE
Search
Advanced SearchSearch Tips
4-RANKS OF CLASS GROUPS OF QUADRATIC EXTENSIONS OF CERTAIN QUADRATIC FUNCTION FIELDS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
4-RANKS OF CLASS GROUPS OF QUADRATIC EXTENSIONS OF CERTAIN QUADRATIC FUNCTION FIELDS
Bae, Sung-Han; Kang, Pyung-Lyun;
  PDF(new window)
 Abstract
We obtain some density results for the 4-ranks of class groups of quadratic extensions of quadratic function fields analogous to those results of F. Gerth in the classical case.
 Keywords
4-rank of class group;quadratic function field;
 Language
English
 Cited by
 References
1.
S. Bae and H. Jung, $\ell$-ranks of class groups of function fields, submitted.

2.
A. Costa and F. Gerth, Densities for 4-class ranks of totally complex quadratic extensions of real quadratic fields, J. Number Theory 54 (1995), no. 2, 274-286. crossref(new window)

3.
F. Gerth, The 4-class ranks of quadratic fields, Invent. Math. 77 (1984), no. 3, 489-515. crossref(new window)

4.
F. Gerth, Limit probabilities for coranks of matrices over GF(q), Linear and Multilinear Algebra 19 (1986), no. 1, 79-93. crossref(new window)

5.
F. Gerth, The 4-class ranks of quadratic extensions of certain real quadratic function fields, J. Number Theory 33 (1989), no. 1, 18-31. crossref(new window)

6.
F. Gerth, The 4-class ranks of quadratic extensions of certain imaginary quadratic fields, Illinois J. Math. 33 (1989), no. 1, 132-142.

7.
F. Halter-Koch, Ein Satz uber die Geschlechter relativ-zyklischer Zahlkorper von Primzahlgrad und seine Anwendung auf biquadratische-bizyklische Korper, J. Number Theory 4 (1972), 144-156. crossref(new window)

8.
C. Wittmann, $\ell$-class groups of cyclic function fields of degree $\ell$, Finite Fields Appl. 13 (2007), no. 2, 327-347. crossref(new window)