JOURNAL BROWSE
Search
Advanced SearchSearch Tips
ON (ϵ)-LORENTZIAN PARA-SASAKIAN MANIFOLDS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
ON (ϵ)-LORENTZIAN PARA-SASAKIAN MANIFOLDS
Prasad, Rajendra; Srivastava, Vibha;
  PDF(new window)
 Abstract
In this paper we study ()-Lorentzian para-Sasakian manifolds and show its existence by an example. Some basic results regarding such manifolds have been deduced. Finally, we study conformally flat and Weyl-semisymmetric ()-Lorentzian para-Sasakian manifolds.
 Keywords
()-Lorentzian para-Sasakian manifold;-recurrent;-Einstein manifold;conformally flat;quasi-constant curvature;Weyl-semisymmetric;
 Language
English
 Cited by
1.
ON LORENTZIAN QUASI-EINSTEIN MANIFOLDS,;;;

대한수학회지, 2011. vol.48. 4, pp.669-689 crossref(new window)
 References
1.
A. Bejancu and K. L. Duggal, Real hypersurfaces of indefinite Kaehler manifolds, Int. J. Math. Math. Sci. 16 (1993), no. 3, 545-556. crossref(new window)

2.
B. Y. Chen and K. Yano, Hypersurfaces of a conformally flat space, Tensor (N.S.) 26 (1972), 318-322.

3.
S. S. Chern, On the curvature and characteristic classes of a Riemannian manifold, Abh. Math. Semin. Univ. Hambg 20 (1956), 117-126.

4.
U. C. De and A. Sarkar, On ($\epsilon$)-Kenmotsu manifolds, Hadronic J. 32 (2009), no. 2, 231-242.

5.
K. L. Duggal, Space time manifold and contact structures, Int. J. Math. Math. Sci. 13 (1990), no. 3, 545-553. crossref(new window)

6.
R. Kumar, R. Rani, and R. K. Nagaich, On sectional curvature of ($\epsilon$)-Sasakian mani- folds, Int. J. Math. Math. Sci. 2007 (2007), Art. ID 93562, 8 pp.

7.
K. Matsumoto, On Lorentzian paracontact manifolds, Bull. Yamagata Univ. Natur. Sci. 12 (1989), no. 2, 151-156.

8.
K. Matsumoto and I. Mahai, On a certain transormations in a Lorentzian para-Sasakian manidfold, Tensor (N.S.) 47 (1988), no. 2, 189-197.

9.
I. Mihai and R. Rosca, On Lorentzian P-Sasakian manifolds, Classical Analysis, World Scientific Publ., Signapore, (1992), 155-169.

10.
I. Mihai, A. A Shaikh, and U. C. De, On Lorentzian para-Sasakian manifolds, Rendiconti Sem. Mat. Messina, Serie II, 1999.

11.
X. Xufeng and C. Xiaoli, Two theorem on ($\epsilon$)-Sasakian manifolds, Int. J. Math. Math. Sci. 21 (1998), no. 2, 249-254. crossref(new window)