JOURNAL BROWSE
Search
Advanced SearchSearch Tips
A CLASSIFICATION OF (κ, μ)-CONTACT METRIC MANIFOLDS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
A CLASSIFICATION OF (κ, μ)-CONTACT METRIC MANIFOLDS
Yildiz, Ahmet; De, Uday Chand;
  PDF(new window)
 Abstract
In this paper we study -projectively semisymmetric, -pro-jectively semisymmetric, -Weyl semisymmetric and -Weyl semisym- metric non-Sasakian (, )-contact metric manifolds. In all the cases the manifold becomes an -Einstein manifold. As a consequence of these results we obtain that if a 3-dimensional non-Sasakian (, )-contact metric manifold satisfies such curvature conditions, then the manifold reduces to an N()-contact metric manifold.
 Keywords
semisymmetric spaces;(, )-contact metric manifolds;non-Sasakian manifolds;-Einstein manifolds;-projectively semisymmetric;-projectively semisymmetric;-Weyl semisymmetric;-Weyl semisymmetric;
 Language
English
 Cited by
1.
ON GENERALIZED QUASI-CONFORMAL N(k, μ)-MANIFOLDS, Communications of the Korean Mathematical Society, 2016, 31, 1, 163  crossref(new windwow)
2.
ϕ-semisymmetric generalized Sasakian space-forms, Arab Journal of Mathematical Sciences, 2015, 21, 2, 170  crossref(new windwow)
3.
CERTAIN SEMISYMMETRY PROPERTIES OF (𝜅, 𝜇)-CONTACT METRIC MANIFOLDS, Bulletin of the Korean Mathematical Society, 2016, 53, 4, 1237  crossref(new windwow)
 References
1.
D. E. Blair, T. Koufogiorgos, and B. J. Papantoniou, Contact metric manifolds satisfying a nullity condition, Israel J. Math. 91 (1995), no. 1-3, 189-214. crossref(new window)

2.
E. Boeckx, A full classification of contact metric (k; $\mu$)-spaces, Illinois J. Math. 44 (2000), no. 1, 212-219.

3.
E. Boeckx, P. Buecken, and L. Vanhecke, $\phi$-symmetric contact metric spaces, Glasg. Math. J. 41 (1999), no. 3, 409-416. crossref(new window)

4.
U. C. De, A. A. Shaikh, and S. Biswas, On $\Phi$-recurrent Sasakian manifolds, Novi Sad J. Math. 33 (2003), no. 2, 43-48.

5.
O. Kowalski, An explicit classification of 3-dimensional Riemannian spaces satisfying R(X, Y ) ${\cdot}$ R = 0, Czechoslovak Math. J. 46(121) (1996), no. 3, 427-474.

6.
B. J. Papantoniou, Contact Riemannian manifolds satifying R($\varepsilon$,X) ${\cdot}$ R = 0 and $\varepsilon$ $\in$ (k, $\mu$)-nullity distribution, Yokohama Math. J. 40 (1993), no. 2, 149-161.

7.
Z. I. Szabo, Structure theorems on Riemannian spaces satisfying R(X, Y ) ${\cdot}$ R = 0. I. The local version, J. Differential Geom. 17 (1982), no. 4, 531-582.

8.
T. Takahashi, Sasakian $\phi$-symmetric spaces, Tohoku Math. J. (2) 29 (1977), no. 1, 91-113. crossref(new window)

9.
S. Tanno, Ricci Curvatures of contact Riemannian manifolds, Tohoku Math. J. (2) 40 (1988), no. 3, 441-448. crossref(new window)

10.
J. Vilms, Submanifolds of Euclidean space with parallel second fundamental form, Proc. Amer. Math. Soc. 32 (1972), 263-267.

11.
K. Yano and S. Bochner, Curvature and Betti numbers, Annals of Mathematics Studies 32, Princeton University Press, 1953.