JOURNAL BROWSE
Search
Advanced SearchSearch Tips
FUZZY δ-TOPOLOGY AND COMPACTNESS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
FUZZY δ-TOPOLOGY AND COMPACTNESS
Lee, Seok-Jong; Yun, Sang-Min;
  PDF(new window)
 Abstract
We introduce the concepts of fuzzy -interior and show that the set of all fuzzy -open sets is also a fuzzy topology, which is called the fuzzy -topology. We obtain equivalent forms of fuzzy -continuity. More-over, the notions of fuzzy -compactness and fuzzy locally -compactness are defined and their basic properties under fuzzy -continuous mappings are investigated.
 Keywords
fuzzy -continuity;fuzzy -topology;fuzzy -compact;fuzzy locally -compact;
 Language
English
 Cited by
 References
1.
K. K. Azad, On fuzzy semicontinuity, fuzzy almost continuity and fuzzy weakly conti- nuity, J. Math. Anal. Appl. 82 (1981), no. 1, 14-32. crossref(new window)

2.
C. L. Chang, Fuzzy topological spaces, J. Math. Anal. Appl. 24 (1968), 182-190. crossref(new window)

3.
J. R. Choi, B. Y. Lee, and J. H. Park, On fuzzy $\theta$-continuous mappings, Fuzzy Sets and Systems 54 (1993), no. 1, 107-113. crossref(new window)

4.
S. Ganguly and S. Saha, A note on $\delta$-continuity and $\delta$-connected sets in fuzzy set theory, Simon Stevin 62 (1988), no. 2, 127-141.

5.
I. M. Hanafy, $\delta$-compactness in fuzzy topological spaces, Math. Japonica 51 (2000), no. 2, 229-234.

6.
Y. C. Kim and J. M. Ko, Fuzzy semi-regular spaces and fuzzy $\delta$-continuous functions, International Journal of Fuzzy Logic and Intelligent Systems 1 (2001), 69-74.

7.
Y. C. Kim and J. W. Park, R-fuzzy $\delta$-closure and r-fuzzy -closure sets, International Journal of Fuzzy Logic and Intelligent Systems 10 (2000), no. 6, 557-563.

8.
Y. C. Kim, A. A. Ramadan, and S. E. Abbas, Separation axioms in terms of $\theta$-closure and $\delta$-closure operators, Indian J. Pure Appl. Math. 34 (2003), no. 7, 1067-1083.

9.
S. J. Lee and J. M. Chu, Categorical property of intuitionistic topological spaces, Commun. Korean Math. Soc. 24 (2009), no. 4, 595-603. crossref(new window)

10.
S. J. Lee and Y. S. Eoum, Intuitionistic fuzzy $\theta$-closure and $\theta$interior, Commun. Korean Math. Soc. 25 (2010), no. 2, 273-282. crossref(new window)

11.
S. J. Lee and J. T. Kim, Fuzzy strongly (r; s)-precontinuous mappings, IEEE Interna- tional Conference on Fuzzy Systems (2009), 581-586.

12.
M. N. Mukherjee and S. P. Sinha, On some near-fuzzy continuous functions between fuzzy topological spaces, Fuzzy Sets and Systems 34 (1990), no. 2, 245-254. crossref(new window)

13.
M. N. Mukherjee and S. P. Sinha, Fuzzy $\Theta$ -closure operator on fuzzy topological spaces, Internat. J. Math. Math. Sci. 14 (1991), no. 2, 309-314. crossref(new window)

14.
Z. Petricevic, On fuzzy semiregularization, separation properties and mappings, Indian J. Pure Appl. Math. 22 (1991), no. 12, 971-982.

15.
P. M. Pu and Y. M. Liu, Fuzzy topology I. Neighborhood structure of a fuzzy point and Moore-Smith convergence, J. Math. Anal. Appl. 76 (1980), no. 2, 571-599. crossref(new window)

16.
L. A. Zadeh, Fuzzy sets, Information and Control 8 (1965), 338-353. crossref(new window)