JOURNAL BROWSE
Search
Advanced SearchSearch Tips
COMMON FIXED POINT THEOREMS UNDER STRICT CONTRACTIVE CONDITIONS IN FUZZY METRIC SPACES USING PROPERTY (E.A)
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
COMMON FIXED POINT THEOREMS UNDER STRICT CONTRACTIVE CONDITIONS IN FUZZY METRIC SPACES USING PROPERTY (E.A)
Sedghi, Shaban; Shobe, Nabi;
  PDF(new window)
 Abstract
We prove common fixed point theorems for weakly compatible mappings satisfying strict contractive conditions in fuzzy metric spaces using property (E.A). Our theorems extend a theorem of [1].
 Keywords
fuzzy metric spaces;weakly compatible mappings;common fixed point;property (E.A);common property (E.A);
 Language
English
 Cited by
 References
1.
M. Aamri and D. El Moutawakil, Some new common fixed point theorems under strict contractive conditions, J. Math. Anal. Appl. 270 (2002), no. 1, 181-188. crossref(new window)

2.
A. Aliouche, A common fixed point theorem for weakly compatible mappings in symmet- ric spaces satisfying a contractive condition of integral type, J. Math. Anal. Appl. 322 (2006), no. 2, 796-802. crossref(new window)

3.
A. Branciari, A fixed point theorem for mappings satisfying a general contractive condition of integral type, Int. J. Math. Sci. 29 (2002), no. 9, 531-536. crossref(new window)

4.
S. S. Chang, Y. J. Cho, B. S. Lee, J. S. Jung, and S. M. Kang, Coincidence point theorems and minimization theorems in fuzzy metric spaces, Fuzzy Sets and Systems 88 (1997), no. 1, 119-127. crossref(new window)

5.
Y. J. Cho, H. K. Pathak, S. M. Kang, and J. S. Jung, Common fixed points of compatible maps of type (fi) on fuzzy metric spaces, Fuzzy Sets and Systems 93 (1998), no. 1, 99- 111. crossref(new window)

6.
Z. K. Deng, Fuzzy pseudometric spaces, J. Math. Anal. Appl. 86 (1982), no. 1, 74-95. crossref(new window)

7.
A. Djoudi and A. Aliouche, Common fixed point theorems of Gregus type for weakly compatible mappings satisfying contractive conditions of integral type, J. Math. Anal. Appl. 329 (2007), no. 1, 31-45. crossref(new window)

8.
M. A. Erceg, Metric spaces in fuzzy set theory, J. Math. Anal. Appl. 69 (1979), no. 1, 205-230. crossref(new window)

9.
A. George and P. Veeramani, On some result in fuzzy metric space, Fuzzy Sets and Systems 64 (1994), no. 3, 395-399. crossref(new window)

10.
J. Goguen, L-fuzzy sets, J. Math. Anal. Appl. 18 (1967), 145-174. crossref(new window)

11.
M. Grebiec, Fixed points in fuzzy metric spaces, Fuzzy Sets and Systems 27 (1988), no. 3, 385-389. crossref(new window)

12.
A. Gregori and A. Sapena, On fixed-point theorem in fuzzy metric spaces, Fuzzy Sets and Systems 125 (2002), no. 2, 245-252. crossref(new window)

13.
O. Hadzic, Fixed point theorem for multivalued mappings in probabilistic metric spaces, Fuzzy Sets and Systems 88 (1997), no. 2, 219-226. crossref(new window)

14.
G. Jungck, Compatible mappings and common fixed points, Internat. J. Math. Math. Sci. 9 (1986), no. 4, 771-779. crossref(new window)

15.
O. Kaleva and S. Seikkala, On fuzzy metric spaces, Fuzzy Sets and Systems 12 (1984), no. 3, 215-229. crossref(new window)

16.
I. Kramosil and J. Michalek, Fuzzy metric and statistical metric spaces, Kybernetica 11 (1975), no. 5, 326-334.

17.
D. Mihet, A Banach contraction theorem in fuzzy metric spaces, Fuzzy Sets and Systems 144 (2004), no. 3, 431-439. crossref(new window)

18.
R. P. Pant, Common fixed point theorems for contractive maps, J. Math. Anal. Appl. 226 (1998), no. 1, 251-258. crossref(new window)

19.
R. P. Pant, R-weak commutativity and common fixed points, Soochow J. Math. 25 (1999), no. 1, 37-42.

20.
R. P. Pant and V. Pant, Common fixed point under strict contractive conditions, J. Math. Anal. Appl. 248 (2000), no. 1, 327-332. crossref(new window)

21.
E. Pap, O. Hadzic, and R. Mesiar, A fixed point theorem in probabilistic metric spaces and an application, J. Math. Anal. Appl. 202 (1996), no. 2, 433-449. crossref(new window)

22.
J. H. Park, Intuitionistic fuzzy metric spaces, Chaos Solitons Fractals 22 (2004), no. 5, 1039-1046. crossref(new window)

23.
B. E. Rhoades, Two fixed-Point Theorems for mappings satisfying a general contractive condition of integral type, Int. J. Math. Math. Sci. 2003 (2003), no. 63, 4007-4013. crossref(new window)

24.
R. Saadati and J. H. Park, On the intuitionistic fuzzy topological spaces, Chaos Solitons Fractals 27 (2006), no. 2, 331-344. crossref(new window)

25.
R. Saadati, A. Razani, and H. Adibi, A Common fixed point theorem in L-fuzzy metric spaces, Chaos Solitons Fractals 33 (2007), no. 2, 358-363. crossref(new window)

26.
R. Saadati R. and S. Sedghi, A common fixed point theorem for R-weakly commuting maps in fuzzy metric spaces, 6th Iranian Conference on Fuzzy Systems 2006, 387-391.

27.
B. Schweizer and A. Sklar, Probabilistic Metric Spaces, North-Holland, Amsterdam, 1983.

28.
S. Sedghi, N. Shobe, and M. A. Selahshoor, A common fixed point theorem for four mappings in two complete fuzzy metric spaces, Advances in Fuzzy Mathematics 1 (2006), no. 1, 1-8.

29.
P. Vijayaraju, B. E. Rhoades, and R. Mohanraj, A fixed point theorem for a pair of maps satisfying a general contractive condition of integral type, Int. J. Math. Math. Sci. 2005 (2005), no. 15, 2359-2364. crossref(new window)

30.
L. A. Zadeh, Fuzzy sets, Inform and Control. 8 (1965), 338-353. crossref(new window)