JOURNAL BROWSE
Search
Advanced SearchSearch Tips
N-SUBALGEBRAS OF TYPE (∈, ∈ ∨ q) BASED ON POINT N-STRUCTURES IN BCK/BCI-ALGEBRAS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
N-SUBALGEBRAS OF TYPE (∈, ∈ ∨ q) BASED ON POINT N-STRUCTURES IN BCK/BCI-ALGEBRAS
Lee, Kyoung-Ja; Jun, Young-Bae; Zhang, Xiaohong;
  PDF(new window)
 Abstract
Characterizations of -subalgebra of type (, ) are provided. The notion of -subalgebras of type (, ) is introduced, and its characterizations are discussed. Conditions for an -subalgebra of type (, ) (resp. (, ) to be an -subalgebra of type (, ) are considered.
 Keywords
point -structure;closed (resp. open) support;q-support;-support;-subalgebra of types (, );(, );
 Language
English
 Cited by
 References
1.
Y. S. Huang, BCI-algebra, Science Press, Beijing, 2006.

2.
Y. B. Jun, M. S. Kang, and C. H. Park, N-subalgebras in BCK/BCI-algebras based on point N-structures, Int. J. Math. Math. Sci. 2010 (2010), Article ID 303412, 9 pages.

3.
Y. B. Jun and M. Kondo, On transfer principle of fuzzy BCK/BCI-algebras, Sci. Math. Jpn. 59 (2004), no. 1, 35-40.

4.
Y. B. Jun and K. J. Lee, The essence of subtraction algebras based on N-structures, Commun. Korean Math. Soc. (to appear).

5.
Y. B. Jun, K. J. Lee, and S. Z. Song, N-ideals of BCK/BCI-algebras, J. Chungcheong Math. Soc. 22 (2009), 417-437.

6.
Y. B. Jun, M. A. Ozturk, and E. H. Roh, N-structures applied to closed ideals in BCH-algebras, Int. J. Math. Math. Sci. 2010 (2010), Article ID 943565, 9 pages.

7.
M. Kondo and W. A. Dudek, On the transfer principle in fuzzy theory, Mathware Soft Comput. 12 (2005), no. 1, 41-55.

8.
J. Meng and Y. B. Jun, BCK-Algebras, Kyungmoon Sa Co., Seoul, 1994.