JOURNAL BROWSE
Search
Advanced SearchSearch Tips
ON THE RELATIVE ZETA FUNCTION IN FUNCTION FIELDS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
ON THE RELATIVE ZETA FUNCTION IN FUNCTION FIELDS
Shiomi, Daisuke;
  PDF(new window)
 Abstract
In the previous paper [8], the author gave a determinant formula of relative zeta function for cyclotomic function fields. Our purpose of this paper is to extend this result for more general function fields. As an application of our formula, we will give determinant formulas of class numbers for constant field extensions.
 Keywords
zeta functions;class numbers;function fields;
 Language
English
 Cited by
 References
1.
J. Ahn, S. Choi, and H. Jung, Class number formulae in the form of a product of determinants in function fields, J. Aust. Math. Soc. 78 (2005), no. 2, 227-238. crossref(new window)

2.
L. Carlitz and F. R. Olson, Maillet's determinant, Proc. Amer. Math. Soc. 6 (1955), 265-269.

3.
K. Girstmair, The relative class numbers of imaginary cyclic fields of degrees 4, 6, 8, and 10, Math. Comp. 61 (1993), no. 204, 881-887.

4.
D. R. Hayes, Explicit class field theory for rational function fields, Trans. Amer. Math. Soc. 189 (1974), 77-91. crossref(new window)

5.
T. Metsankyla, Bemerkungen uber den ersten Faktor der Klassenzahl des Kreiskorpers, Ann. Univ. Turku. Ser. A I No. 105 (1967), 15 pp.

6.
M. Rosen, A note on the relative class number in function fields, Proc. Amer. Math. Soc. 125 (1997), no. 5, 1299-1303. crossref(new window)

7.
M. Rosen, Number Theory in Function Fields, Springer-Verlag, Berlin, 2002.

8.
D. Shiomi, A determinant formula for relative congruence zeta functions for cyclotomic function fields, J. Aust. Math. Soc. 89 (2010), no. 1, 133-144. crossref(new window)

9.
K. Tateyama, Maillet's determinant, Sci. Papers College Gen. Ed. Univ. Tokyo 32 (1982), no. 2, 97-100.

10.
L. C. Washington, Introduction to Cyclotomic Fields, Springer-Verlag, New York, 1982.